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ABSTRACT

The human tear film is a multilayer structure in which the dynamics are often strongly affected by a floating lipid layer. That layer has liquid
crystalline characteristics and plays important roles in the health of the tear film. Previous models have treated the lipid layer as a Newtonian
fluid in extensional flow. Motivated to develop a more realistic treatment, we present a model for the extensional flow of thin sheets of
nematic liquid crystal. The rod-like molecules of these substances impart an elastic contribution to the rheology. We rescale a weakly elastic
model due to Cummings et al. [“Extensional flow of nematic liquid crystal with an applied electric field,” Eur. J. Appl. Math. 25, 397–423
(2014).] to describe a lipid layer of moderate elasticity. The resulting system of two nonlinear partial differential equations for sheet thickness
and axial velocity is fourth order in space, but still represents a significant reduction of the full system. We analyze solutions arising from sev-
eral different boundary conditions, motivated by the underlying application, with particular focus on dynamics and underlying mechanisms
under stretching. We solve the system numerically, via collocation with either finite difference or Chebyshev spectral discretization in space,
together with implicit time stepping. At early times, depending on the initial film shape, pressure either aids or opposes extensional flow,
which changes the free surface dynamics of the sheet and can lead to patterns reminiscent of those observed in tear films. We contrast this
finding with the cases of weak elasticity and Newtonian flow, where the sheet retains the same qualitative shape throughout time.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151809

I. INTRODUCTION

The tear film of the eye is a thin multi-layer protective liquid film
lying over the cornea. It is painted onto the ocular surface during the
upstroke of the blink, and is re-formed rapidly after each blink.1

Proper function of the tear film is essential for eye health and clear
vision.2 The most abundant component of the tear film is the aqueous
layer, sandwiched between a mucin layer called the glycocalyx, that is
bound to the ocular surface, and a thin lipid layer that floats on it. A
sketch of a cross-section of a small part of the tear film is shown in Fig.
1. Proceeding toward the eye from the surrounding air, the first layer
encountered is the lipid layer, which averages on the order of tens of
nanometers thick.3 Next comes the aqueous layer, which is typically a
few micrometers thick,4 and which contains large molecules such as
soluble mucins and proteins.5 The glycocalyx is a forest of membrane-
bound mucins and associated molecules that form a protective barrier
for the ocular surface.6–9 Finally, the outer surface of the corneal epi-
thelium is the beginning of the ocular surface itself.10

The normal tear film structure can fail to form initially, or some-
time after a blink develop tear breakup, where the tear film fails to coat

the ocular surface.11,12 Tear breakup and associated hyperosmolarity
(excessive saltiness of the local tears) is thought to play an important
role in the development of dry eye disease, which affects millions of
people.13–15 The tear film lipid layer is of interest because it plays an
important role in preventing tear breakup. Simultaneous imaging of
the lipid layer and the aqueous layer16 shows a strong correlation
between lipid layer dynamics and tear breakup. The lipid layer is typi-
cally thought to be a barrier to evaporation, thus providing an impor-
tant function to preserve the tear film between blinks.17,18 However,
the lipid layer composition19 and structure20–22 are complex and not
yet fully understood. Meibum, an oily secretion from meibomian
glands in the eyelids,23 is the primary component of the lipid layer; it
is not uncommonly used as a model for the lipid layer. X-ray scattering
methods applied to in vitro meibum films have suggested that there
are ordered particles in the meibum films with layered structures;22

these particles may have liquid crystal structure. Hot-stage imaging of
meibum droplets have shown birefringence,19 another sign of order
within the meibum. In the meibomian glands23 in the human eyelid,
freeze fracture with electron microscopy shows a layered structure of
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the lipids inside the cells that are the source of the meibum.24 We
interpret this evidence to suggest that the tear film lipid layer could be
an extended liquid crystalline layer (possibly with defects).25 It is not
known whether the entire lipid layer has these qualities, or whether
isolated chunks of structured particles float in the layer; however, there
is general agreement that the lipid layer has non-Newtonian proper-
ties.19,21,22,26,27 These areas of structure in the lipid layer are thought to
provide the barrier against evaporation of the aqueous layer.19,22 In
addition, cooling of liquid crystals facilitates orientation of the mole-
cules in the same direction.28 The ocular surface cools about 1–2 �C
during the interblink period when the eye is open,29–31 and is heated
during the blink; thus there is thermal cycling of the ocular surface as
well as the mechanical cycling from blinks.32,33 The cooling of the lipid
layer may encourage the formation of liquid crystal structure in vivo.20

As the eye reopens during a blink, the lipid layer undergoes
extensional flow as the tear film is painted across the surface of the
eye.1 Rather than spreading smoothly and uniformly over the eye,
imaging of the tear film sometimes reveals stripes or ripples in the lipid
layer (see Fig. 2).1 The goal of this paper is to propose a minimal
model for the lipid layer of the tear film (during the opening part of
the blink cycle) as a thin sheet of liquid crystal in extensional flow. We
will study both weak and moderate elasticity limits, and thereby lay

the foundation enabling us to explore whether such a model can repli-
cate the type of rippling seen in the tear film.

Theoretical modeling of extensional flow was developed quite
extensively in the twentieth century34 and continues to be an active
area of study, in part because of industrial applications such as optical
fiber drawing35 and the use of polymers for a wide range of industrial
purposes. Thus, much work has been done on extensional flow of
both Newtonian and non-Newtonian fluids, especially thin sheets or
fibers. We do not attempt a comprehensive review here, but simply
highlight a few studies of relevance to our problem. Evolution of
Newtonian fibers under extensional flow has been studied extensively,
from axisymmetric viscous fibers with one-dimensional flow by
Schultz and Davis,36 to more complicated three-dimensional models
for non-axisymmetric fibers by Dewynne et al.37,38 Wylie et al.39 dis-
cuss the role of inertia and surface tension in the extensional flow of
viscous fibers and study in particular, situations in which the effects of
surface tension appear at higher order and can be neglected, but where
inertia plays an important role in the evolution. Howell35 presented
several exact solutions for the extensional flow of both sheets and
fibers of primarily Newtonian fluid (and also provides an excellent
overview of earlier extensional flow modeling). Such flows are relevant
for glass manufacturing, printing, and other applications; see also
Dewynne et al.38 for further discussion and references. Non-
Newtonian fluids have also received attention; for example, the devel-
opment of beads on a string has been described by Clasen et al.40 for
polymer fluids in a jet or liquid bridge and by Sostarecz and
Belmonte41 for micellar fluid under stretching, while Smolka et al.42

presented an exact solution for the extensional flow of a thread of fluid
under both weakly and strongly viscoelastic limits. Most relevant to
our application, however, Cummings et al.43 studied extensional flow
of sheets of nematic liquid crystals, and this is the scenario on which
we now focus, as we hope it can shed light on the dynamics of the tear
film of the eye during the blink cycle.

As a starting point, we use the model of Cummings et al.,43 which
uses the Ericksen–Leslie equations to describe extensional flow of a
thin sheet of nematic liquid crystal. The main focus of that paper is the
response of the liquid crystal film to an applied electric field (relevant
to many technological applications, such as electronic displays). In a
biological setting such as the human eye, however, no electric field is
present, thus, we neglect this aspect of the modeling but follow the
same asymptotic approach. We rescale the governing equations and
consider a new limit for the case of moderate elastic effects. The scaling
is based on those developed for nematic thin films on a substrate stud-
ied by Lin et al.44 and Lam et al.45 The application to the extensional

FIG. 2. Ripples in the lipid layer of the
tear film before a blink (left), and after a
blink (right). The ripples become com-
pressed during a blink, and may not
extend to cover the cornea once the eye
is open.1 A version of this figure was pub-
lished in Ref. 1. Reproduced with permis-
sion from Braun et al., Prog. Retinal Eye
Res. 45, 132–164 (2015). Copyright 2015
Elsevier.

FIG. 1. A sketch of the tear film on the ocular surface. Here LL denotes the lipid
layer, AL the aqueous layer, G the glycocalyx, and E is the outermost part of the
corneal epithelium. The objects in the interior of the aqueous layer represent large
mucin and protein molecules.
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case is new, to our knowledge. We analyze a range of different bound-
ary conditions imposed at the sheet’s ends, which are found to strongly
affect the shape of the evolving sheet under stretching. We then inves-
tigate rippling dynamics in the sheet by varying the number of waves
in the initial condition.

The paper is organized as follows. In Sec. II we describe the prob-
lem formulation, and present the mathematical models for both weak
and moderate elasticity. Section III provides details of the numerical
methods used to solve the models. In Sec. IV we present our results.
These include profiles of the sheet thickness, fluid velocity, and film
pressure that result from the different boundary conditions. We com-
pare and contrast the solutions obtained under weak and moderate
elasticity, when either the surface tension or speed of the moving end
is varied. Then we present results when multiple waves are added to
the initial condition, and the mechanisms for the observed dynamics.
Finally, in Sec. V we discuss the results and outline our conclusions.

II. MODELS

To reduce the complexity of the lipid layer geometry seen in Fig.
1, we simplify the cross section of the tear film (the sagittal plane) to
the geometry shown in Fig. 3, where the ripples in the lipid layer of the
tear film appear in a 2D configuration of waves with varying thickness.
This geometry is suggested by the variations in layer thickness seen
in vivo from imaging experiments1 like those of Fig. 2. In this work,
we neglect the aqueous layer, and consider the lipid layer alone, in two
dimensions. Thus, as a first step, we consider it to be a thin free film in
a sheet configuration, with multiple waves on the fluid/air interfaces in
the initial condition.

The sheet of fluid is assumed fixed at the left end, while the right
end moves with a prescribed constant speed v0, providing a simple
model of the opening eyelid following a blink. A sketch is shown in
Fig. 4. As a further simplification, the lipid sheet is assumed symmetric
about its midline, which is assumed to be straight. We denote the
thickness of the sheet by h(x, t), the axial fluid velocity by u(x, t), and
the transverse velocity by w(x, t). The liquid crystal molecules in the
lipid sheet are assumed to have a preferred angle of hB relative to n̂,

the outward-facing unit vector normal to the sheet surface. The angle
of the molecules within the sheet is described by the director field
n ¼ ðsin h; cos hÞ; discussed further in the Appendices.

A. Weak elasticity

Our approach follows that of Cummings et al.,43 who used multi-
ple scale perturbation methods to simplify the Ericksen–Leslie equa-
tions46 governing nematic liquid crystal dynamics. The Ericksen-Leslie
equations [see Eqs. (A1)–(A4) of Appendix A] are nondimensional-
ized using the scalings given below, where primes denotes dimensional
quantities. The coordinates ðx0; z0Þ and velocity components ðu0;w0Þ
correspond to the axial and transverse directions respectively, h0 repre-
sents the sheet thickness, t0 is time, and p0 is pressure:

x0 ¼ Lx; z0 ¼ dLz; u0 ¼ Û u; w0 ¼ dÛw; (1)

h0 ¼ ĥdLh; t0 ¼ L

Û
t; p0 ¼ lÛ

L
p: (2)

As a result of these scalings, we define the non-dimensional (weak
elasticity) surface tension number as

Sw ¼
d

lÛ
c0; (3)

where c0 is the surface tension at the film/air interface. This definition
of Sw applies for all results in the weak elasticity limit.

The dimensional parameters used in the model are defined in
Table I, along with the non-dimensional parameters that result from
the chosen scalings. Asymptotic expansion of the dependent variables
in the small parameter d ¼ ĥ=L (see Subsection 3 of Appendix A),
yields a closed system of equations for the (leading order) sheet thick-
ness h and axial velocity u

ht þ ðhuÞx ¼ 0; (4)

FðhBÞ
GðhBÞ

ðhuxÞx þ
Sw
2
hhxxx ¼ 0: (5)

FIG. 3. Simplified sketch of a cross section of the tear film.

FIG. 4. Schematic of a sheet of nematic liquid crystal stretched between two plates
(further details in the text).

TABLE I. Parameters used in the model scalings for weak elasticity. Different scales
for Sw and N̂w are used in the moderate elasticity model; see Eq. (11). Note that
N̂w , d, and Sw are dimensionless.

Parameter Value (units) Description

l 0.037 (N sm�2) Dynamic viscosity47

Û 0.01 (m s�1) Typical axial velocity48

L 0.001 (m) Typical sheet length48

ĥ 2:5� 10�7 (m) Typical initial sheet thickness1

c0 0.031 (Nm�1) Surface tension
of air/sheet interface49

K 6� 10�12 (N) Elastic constant
of the liquid crystal47

d ¼ ĥ
L
� 1

2:5� 10�4 Aspect ratio

Sw ¼
d

lÛ
c0

0.02 Surface tension/viscosity
comparison

N̂ w ¼
K

lÛdL
0.065 Inverse Ericksen number
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Equation (4) represents conservation of mass, and Eq. (5) is the axial
force balance. The first term in Eq. (5) represents internal, viscous
forces due to extension; these balance with the capillary forces repre-
sented by the second term. The coefficient of the first term is formed
from functions FðhBÞ and GðhBÞ, which depend in general on material
properties of the fluid as well as the leading order solution for the
director angle, h0 [see Eqs. (A22) and (A23) in Appendix A].
However, in the situation considered here, h0 ¼ hB is a fixed angle,
and F and G are themselves also constant. If the properties of a
Newtonian fluid are used, then F=G ¼ 4, and Eq. (5) simplifies to

4ðhuxÞx þ
Sw
2
hhxxx ¼ 0: (6)

For the remainder of this paper, we use this coefficient value of 4 when
presenting weak elasticity solutions. We note that for the weak elastic-
ity scalings chosen here, the pressure is defined as43

p ¼ �2ux �
Sw
2
hxx: (7)

Whenever the pressure is shown for solutions to the weak elasticity
model, we make use of Eq. (7). The Newtonian limit, with zero surface
tension Sw¼ 0, becomes the Trouton model,50 considered extensively
within a Newtonian framework by Howell35 (see also references
therein).

The tension T(t) in the sheet is found by taking the first integral
of the axial force balance in Eq. (6), which gives

TðtÞ ¼ 4hux þ
Sw
2

hhxx �
1
2
h2x

� �
: (8)

In the absence of axial inertia, the tension is spatially uniform through-
out the sheet (independent of x).35

Since we specify the speed of the moving end, we impose the fol-
lowing boundary conditions (BCs), where sðtÞ ¼ 1þ v0t denotes the
location of the moving end,

uð0; tÞ ¼ 0; uðsðtÞ; tÞ ¼ v0; (9)

hxð0; tÞ ¼ 0; hxðsðtÞ; tÞ ¼ 0: (10)

Typically, we take v0 ¼ 1 (consistent with our chosen scalings), with
the exception of Sec. IVE, where we explore varying the speed of the
moving end. Neumann BCs on h specify the contact angle of the film
with the end plates; the plates are assumed to have no effect on the
director field.

For the weak elasticity case, we solve the system of partial differ-
ential equations (PDEs) found in Eqs. (4) and (6), subject to the BCs
in Eqs. (9) and (10), as well as given initial conditions (ICs) for hðx; 0Þ
and uðx; 0Þ discussed below.

B. Moderate elasticity

To consider the case of moderate elasticity, we rescale the pres-
sure to be one order larger while keeping the scalings for the other var-
iables the same. As a result, the inverse Ericksen number, and the
surface tension number S are also redefined as follows:

p0 ¼ lU
dL

p; N̂ ¼ K

lÛ L
; S ¼ d2

lÛ
c0: (11)

Here primes denote dimensional quantities. Following the derivation
outlined in Subsection 3 of Appendix A, we find the leading order
pressure

p ¼ � S
2
hxx; (12)

and obtain the following system

ht þ ðhuÞx ¼ 0; (13)

huxð Þx þ ~Sðh2hxxxÞx ¼ 0; (14)

where ~S ¼ C2ðhBÞ=B2ðhBÞS is the scaled surface tension with the scale
factors B2 and C2 given in Eqs. (A55) and (A56) of Appendix A. For
simplicity, we take ~S ¼ S in our computational solutions. In this case
of moderate elasticity, the tension in the sheet is now given by

TðtÞ ¼ hux þ Sh2hxxx: (15)

Although the surface tension at the lipid layer/air interface of the
tear film is unknown, we use a value based on surface tension mea-
surements for the nematic liquid crystal 5CB at a range of tempera-
tures surrounding 35� C,51 which is close to the temperature at the
surface of the eye.52 Unless otherwise noted, we take S¼ 0.025.

We note that Eq. (14) is higher order than the analogous equa-
tion for the weak elasticity or Newtonian cases;35,43 this change will be
consequential for the dynamics of the film. To determine the number
of boundary conditions needed we use Eq. (15) to eliminate hux from
Eq. (13), yielding

ht þ uhx þ TðtÞ � Sh2hxxx ¼ 0: (16)

The highest derivative in this equation is third order, implying that we
need three boundary conditions on h to solve the system; thus, we will
need an additional boundary condition apart from those given in Eqs.
(9) and (10).

1. Reducing the order

To solve the model numerically, it is preferable to reduce the order
of the system by adding a dependent variable. We can add the pressure,
p, shown in Eq. (12) to our system of PDEs as an additional dependent
variable, and substitute into the axial force balance Eq. (14) to reduce
the order of the highest derivative appearing in the system. We obtain

ht þ ðhuÞx ¼ 0; (17)

huxð Þx � ðh2pxÞx ¼ 0; (18)

pþ S
2
hxx ¼ 0: (19)

Using this substitution, we can write the equation for tension in the
moderate elasticity case [see Eq. (15)] as

TðtÞ ¼ hux � h2px: (20)

The space-dependent terms on the right hand side of this equation
combine to be independent of x.

2. Boundary and initial conditions

The boundary conditions for the axial velocity u are as in Eq. (9)
for the weak elasticity case: uð0; tÞ ¼ 0 and uðsðtÞ; tÞ ¼ v0. For the
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sheet thickness h three boundary conditions are required in this mod-
erate elasticity case: we consider five such sets of boundary conditions,
summarized in Table II. In all cases, the third (additional) boundary
condition on h is enforced by setting pxð0; tÞ ¼ 0 on the fixed end, as
discussed below.

Turning to Table II, cases I and II specify Neumann conditions
(homogeneous and non-homogenous) on h. Cases III and IV specify a
Robin condition on the right (moving) or left (fixed) end respectively.
Case V specifies Robin conditions on both ends of the domain. The
parameter � may vary between 0 and 1; a smaller value for � results in
a boundary condition that is close to a pure Dirichlet condition at that
end. In the physical sense, the Robin boundary conditions model cap-
illarity on one end of the sheet. A Dirichlet condition would represent
fluid pinned to the plate, with the slope free to vary. The Neumann
conditions specify the contact angle formed by the liquid crystal fluid
and the plate, but the thickness of the film is free to vary.
Homogeneous Neumann conditions represent a contact angle of p=2.

Our final choice of boundary condition in this moderate elasticity
case is motivated by the tension equation Eq. (20). To do this, we take
an initial condition, compute all the terms in the tension, then exam-
ine the value of each term at the boundary. As an example, for the ini-
tial condition hðx; 0Þ ¼ 0:9þ 0:1 cosð2pxÞ, we first find uðx; 0Þ by
solving Eq. (14) subject to uð0; 0Þ ¼ 0 and uð1; 0Þ ¼ v0 with S
¼ 0:025 and v0 ¼ 1. To find the initial pressure pðx; 0Þ, the definition
in Eq. (19) is used. We then plot the individual terms from Eq. (20)
[or equivalently, Eq. (15)]. These curves result from compatible
boundary and initial conditions for which we present solutions below.
We see that one component of the tension, h2px , is zero at the left end,
which implies that pxð0; 0Þ ¼ 0. We have generalized this observation
to impose pxð0; tÞ ¼ 0 as a third boundary condition in all of our
computations. Attempts to instead impose the third boundary condi-
tion at the right end of the domain cause instability in our simulations,
which suggests that the PDE has a right-going characteristic, although
we have not proven this. Taking this empirical evidence together, we
choose to enforce pxð0; tÞ ¼ 0 as the additional boundary condition at
x¼ 0 for the moderate elasticity model. In physical terms, Fig. 5 shows
that, at x¼ 0, all of the tension is in the extensional term while none is
in the pressure term.

The initial condition for h is chosen as

hðx; 0Þ ¼ aþ b cosð2pk0xÞ þ c xðx � 1Þ: (21)

The wavenumber k0 will typically be k0 ¼ 1 but will be systematically
varied in later sections. The quadratic term (c 6¼ 0) is used only in BC
case II, where we allow a nonzero slope at the ends. The initial condi-
tion for p is calculated exactly via Eq. (18). We also solve for uðx; 0Þ in
order to have a consistent initial condition for the numerical solvers
that we use. We return to this point in Sec. III below.

We note that the tear film volume (area) remains constant for all
choices of our BCs to within the tolerances specified for the numerical
methods. Analytically, this must be true due to the boundary condi-
tions on u; at the ends, the fluid must travel with the same speed which
does not allow fluid to cross the boundaries.

III. NUMERICAL SOLUTION

To solve the models numerically, we first map from a
moving domain 0 < x < sðtÞ with sðtÞ ¼ 1þ v0t, to a fixed domain
0 < n < 1 using n ¼ x=sðtÞ. On the fixed domain, the unknowns
become Hðn; tÞ ¼ hðx; tÞ and Uðn; tÞ ¼ uðx; tÞ. We apply this map-
ping to both the weak and moderate elasticity models.

A. Weak elasticity

After mapping Eqs. (4), (5), (9), (10), and (21) to the fixed
domain, one obtains

Ht � v0
n
s
Hn þ

1
s
ðUHÞn ¼ 0; (22)

4ðUnHÞn þ
S
2s
HHnnn ¼ 0; (23)

Hnð0; tÞ ¼ 0; Hnð1; tÞ ¼ 0; (24)

Uð0; tÞ ¼ 0; Uð1; tÞ ¼ v0; (25)

Hðn; 0Þ ¼ aþ b cosð2pk0nÞ þ cnðn� 1Þ: (26)

Note that for this model there are only two BCs for h and two BCs for
u;43 we do not impose the BC on p.

B. Moderate elasticity

For the moderate elasticity case, the problem defined in Eqs. (17),
(18), (19), and (21), along with the boundary conditions for BC case
III, becomes

TABLE II. Summary of boundary conditions on a moving domain with an initial con-
dition hðx; 0Þ ¼ aþ b cosð2pk0xÞ þ c xðx � 1Þ, and 0 < � < 1. The quadratic
term in the initial condition is only used in case II.

Case Fixed end, x¼ 0
Moving end,
x ¼ 1þ v0t a b c

I hx ¼ 0; px ¼ 0 hx ¼ 0 0.9 0.1 0
II hx ¼ �c; px ¼ 0 hx¼ c 0.9 0.1 0.1
III hx ¼ 0; px ¼ 0 ð1� �Þðh� 1Þ

þ �hx ¼ 0
0.9 0.1 0

IV ð1� �Þðh� 1Þ � �hx ¼ 0;
px ¼ 0

hx ¼ 0 0.9 0.1 0

V ð1� �Þðh� 1Þ � �hx ¼ 0;
px ¼ 0

ð1� �Þðh� 1Þ
þ �hx ¼ 0

0.9 0.1 0

FIG. 5. The tension T(t) and its component terms from Eq. (20) are plotted at t¼ 0
for hðx; 0Þ ¼ 0:9þ 0:1 cosð2pxÞ. See text for further discussion.
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Ht � v0
n
s
Hn þ

1
s
ðUHÞn ¼ 0; (27)

UnHð Þn � H2Pn

� �
n ¼ 0; (28)

P þ S
2s2

Hnn ¼ 0; (29)

Hnð0; tÞ ¼ 0; Pnð0; tÞ ¼ 0; ð1� �ÞsHð1; tÞ þ �Hnð1; tÞ ¼ 0; (30)

Uð0; tÞ ¼ 0; Uð1; tÞ ¼ v0; (31)

Hðn; 0Þ ¼ aþ b cosð2pk0nÞ þ cnðn� 1Þ: (32)

Boundary condition case I is recovered by setting �¼ 1 in case III
here, while cases II, IV, and V are transformed similarly.

C. Numerical methods

We describe the implementation for the moderate elasticity case
here in detail; the weak elasticity case is treated similarly. After map-
ping to a fixed domain, we apply a version of the method of lines; we
implement two approaches to validate our results. The spatial deriva-
tives are approximated via collocation with either finite difference or
Chebyshev spectral discretization. When utilizing finite difference
methods, we use a uniform grid. Second-order centered formulas are
used inside the domain, and the appropriate second-order non-
centered formulas are used to approximate the derivatives at the left
and right ends of the sheet. The result is a system of differential alge-
braic equations (DAEs) at the grid points that we solve forward in
time in MATLAB (MathWorks, Natick, MA, USA) using ode15s. In
general, the number of grid points is N¼ 512. As a check, we use the
trapezoidal method to calculate the fluid volume, and observe that it is
conserved to the order of our imposed tolerances of 10�4.

Alternatively, we use Chebyshev spectral discretization in space,
which also results in a DAE system solved in the same way.53

Typically, the number of grid points we used was N¼ 128 for this
method.

For either approach, the initial sheet thickness hðx; 0Þ was first
specified, then pðx; 0Þ computed from its definition in Eq. (19).
Finally, the discrete version of the axial force balance Eq. (18) was
solved for u on the grid points using the backslash.

The results using both methods agree, until the final times when
error accumulates at the ends of the domain with the finite difference
method. However, the spectral method could not complete computa-
tions over as wide a range of parameter values (for example, for surface
tension) as could the finite difference method. Validation data are
given in Appendix B.

IV. RESULTS

We begin by showing solutions for thickness and velocity for the
simple case of an initially flat sheet. We then present solutions for
thickness, velocity, and pressure obtained for the various boundary
conditions outlined in Table II in the case of moderate elasticity, and
we compare them with the corresponding results in the case of weak
elasticity (where the condition pxð0; tÞ ¼ 0 is not used). We note how
the location of the sheet’s minimum thickness changes depending on
the boundary conditions imposed. Next, we vary both the surface ten-
sion and speed of the moving end, and demonstrate the effect for both
moderate and weak elasticity. We investigate dynamics resulting from
increasing the number of sinusoidal waves in the initial condition, and

show examples of how the wave profile changes through time depend-
ing on the surface tension value, and the amplitude and period of the
imposed initial waves. Finally, we discuss possible mechanisms
responsible for those dynamics.

A. Neumann conditions on h

We begin by showing solutions for an initially flat sheet. We take
hðx; 0Þ ¼ 1, with BC case I given by hxð0; tÞ ¼ hxð1; tÞ ¼ 0;
uðx; 0Þ ¼ v0x; uð0; tÞ ¼ 0, and uð1; tÞ ¼ v0 ¼ 1. In this scenario, the
sheet remains spatially uniform for all time, and the PDEs governing h
and u for both weak and moderate elasticity are the same, as the terms
containing surface tension are lost. Solutions for h and u are shown in
Fig. 6 on the moving domain. The thickness decreases uniformly, and
the velocity increases linearly across the sheet. Note that px¼ 0 trivially
for all x and t for both moderate and weak elasticity models. In the
case of moderate elasticity, the pressure is zero at each time level. In
the case of weak elasticity, from Eq. (7), p ¼ �2ux and so p is constant
in x but decreasing in time.

Next, we consider the moderate elasticity solutions for the sheet
thickness, axial velocity, and pressure when S¼ 0.1 for a sinusoidal IC
with a¼ 0.9, b¼ 0.1, and c¼ 0. Results are shown in Fig. 7. Initially,
the axial velocity is negative for much of the sheet, meaning that the
fluid in these areas is moving to the left. This changes the profile of the
sheet thickness very quickly, and extensional flow leads to thinning of
the sheet at the right end. The fluid away from the right end is left
behind, and by t¼ 0.25, there is no longer a local maximum in the
thickness at the right end. From that time until t¼ 3, the sheet thick-
ness has lost approximately half a wave from the initial one full period.

The tendency of fluid to gather at the left end while the right end
becomes thinner is a characteristic of moderate elasticity that is not
seen in the case of weak elasticity. Figure 8 shows the analogous solu-
tions for h, u and p of a sheet of fluid with weak elasticity. The sheet
remains symmetric about its midpoint throughout the computation,
and hmin occurs in the middle of the sheet. The middle plot of Fig.
8 shows that as time progresses, the strain rate ux is largest in the mid-
dle of the sheet, and the sheet thins fastest there. The pressure remains
negative throughout the sheet, but the absolute values of the pressure
and their gradients decrease as time increases.

B. Robin boundary conditions (moderate elasticity)

Imposing a Robin boundary condition at the moving end (BC
case III) of a sheet with moderate elasticity leads to the formation of a

FIG. 6. Profiles of sheet thickness, h, and fluid velocity, u, for an initially flat sheet
with homogeneous Neumann boundary conditions and v0 ¼ 1.
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meniscus there, as shown in Fig. 9. The sheet thins primarily in the
middle and left (fixed) end of the sheet, with a narrow portion of the
fluid at the right traveling at roughly the same speed as the right (mov-
ing) end. The pressure remains positive at the left end due to capillar-
ity, but becomes negative throughout the part of the sheet that forms
the meniscus.

Figure 10 shows the results of imposing a Robin condition at
the fixed end on the left (BC case IV). This meniscus is smaller in
both height and width than that of Fig. 9, where the Robin condition
is imposed at the right. As observed in Fig. 9, thinning corresponds
to increased strain rate ux in the portion of the sheet where it occurs.
As time increases the meniscus grows, and the pressure becomes

FIG. 8. Profiles of sheet thickness, h, fluid
velocity, u, and pressure, p, for weak elas-
ticity with a sinusoidal IC and BC case I
when S¼ 0.1 and v0 ¼ 1.

FIG. 9. Profiles of sheet thickness, h, fluid
velocity, u, and pressure, p, for moderate
elasticity with BC case III, a Robin bound-
ary condition at the right end; � ¼ 0:1,
S¼ 0.025, and v0 ¼ 1.

FIG. 7. Profiles of sheet thickness, h, fluid
velocity, u, and pressure, p, for moderate
elasticity with a sinusoidal IC and BC case
I when S¼ 0.1 and v0 ¼ 1.

FIG. 10. Profiles of sheet thickness, h,
fluid velocity, u, and pressure, p, for mod-
erate elasticity with BC case IV, a Robin
boundary condition at the left end;
� ¼ 0:1, S¼ 0.025, and v0 ¼ 1.
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large and negative at x¼ 0, while approaching zero in the rest of the
film.

Table III summarizes the differences: in both cases, the maxi-
mum sheet thickness hmax occurs at the end where the Robin condi-
tion is enforced. When the condition is enforced at the left (BC case
IV), both hmax and the range of observed sheet thicknesses
(Dh ¼ hmax � hmin) are smaller, and at the final time t¼ 4, hmin is less
than half the corresponding value when the Robin condition is
imposed at the right (BC case III).

Finally, imposing a Robin boundary condition on both ends (BC
case V) of a sheet with moderate elasticity generates an additional
wave which is slowly lost as the sheet stretches, as shown in Fig. 11.
The sheet thins more at the left (fixed) end of the sheet, with fluid
accumulating at the right (moving) end. The thin region near the fixed
end extends for roughly a third of the length of the film at the final
time.

C. Location of minimum thickness

As mentioned before, in the weak elasticity case, the evolution of
the sheet is symmetric about the midpoint for the chosen boundary
and initial conditions. The minimum sheet thickness hmin begins, and
remains, at the midpoint throughout the evolution. For moderate elas-
ticity, however, the situation is more complicated. Figure 12 summa-
rizes a range of results for different BCs, with the initial condition
hðx; 0Þ ¼ aþ b cosð2pxÞ with a¼ 0.9, b¼ 0.1 (as used in the results
of Secs. IVA and IVB above), and S¼ 0.025 unless otherwise noted.
Figure 12 demonstrates that, even with a simple initial film shape that
is initially symmetric about the midpoint, the minimum thickness
migrates from the midpoint, and can occur in a variety of locations on

the sheet that depend on the boundary conditions imposed. If we con-
sider BC case I (homogeneous Neumann conditions on h), with
S¼ 0.1, then the minimum rapidly migrates to the right end of the
domain, by about t¼ 0.25. For BC case I with S¼ 0.025 (not shown in
Fig. 12), the minimum remains in the right half of the domain near
x¼ 0.5. Allowing a slight slope on the end (BC case II, with c¼ 0.1)
keeps the minimum slightly more centered than BC case I for the
same S. With S¼ 0.025 and BC cases I and II, the minimum starts in
the center of the sheet (as dictated by the initial condition), shifts to
the right by t¼ 0.15 or so, and then slowly begins to approach the cen-
ter of the sheet again. A Robin boundary condition on the right (BC
case III) leads to a minimum location that begins similarly to BC case
I: the minimum shifts to about n ¼ x=sðtÞ ¼ 0:7, but then stays there.
A Robin boundary condition on the left (BC case IV) causes the loca-
tion of the minimum to move around the most. Referring to Fig. 10,
we see that for early times, the sheet has two local minima, with the
global minimum closest to the moving end. As the sheet lengthens,
that dip flattens, and the global minimum shifts to the bottom of the
steep meniscus near the fixed end. For the remaining time, the mini-
mum stays close to the left (fixed) end. This switch in the location of
the global minimum is clearly seen in Fig. 12. Robin boundary condi-
tions on both ends (BC case V) leads to a minimum location pattern
that closely follows that of BC case IV.

FIG. 11. Profiles of sheet thickness, h,
fluid velocity, u, and pressure, p, for mod-
erate elasticity with BC case V, Robin
boundary conditions at both ends;
� ¼ 0:1, S¼ 0.025, and v0 ¼ 1.

TABLE III. Comparison of imposing Robin boundary conditions at either and both
ends of the sheet. Here hmax is the maximum sheet thickness, hmin is the minimum
sheet thickness, and Dh¼ hmax � hmin.

t¼ 0.5 t¼ 4

Robin location hmax hmin Dh hmax hmin Dh

Right end
(BC case III, Fig. 9)

0.835 0.497 0.338 0.763 0.086 0.676

Left end
(BC case IV, Fig. 10)

0.758 0.538 0.220 0.431 0.037 0.394

Both ends
(BC case V, Fig. 11)

0.835 0.502 0.333 0.811 0.027 0.785

FIG. 12. Location of minimum sheet thickness shown on a fixed domain through
time. In all cases, hðx; 0Þ ¼ 0:9þ 0:1 cosð2pxÞ, and S¼ 0.025 except where oth-
erwise stated. In BC case II, c¼ 0.1 (see Table II).
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D. Varying the surface tension (moderate elasticity)

We summarize the effect of the surface tension c on the sheet
thickness for the moderate elasticity model in Fig. 13, where we com-
pare a range of S-values, spanning four orders of magnitude. The first
plot of Fig. 13 shows the minimum sheet thickness hmin vs time t on a
semilog scale. The relationship between hmin and S is not monotone;
the largest values of hmin for all values of time occur when surface ten-
sion is largest (S¼ 1), while the smallest values occur at S¼ 0.1.
Smaller values of S lead to intermediate minimum thickness values.
The second plot of Fig. 13 shows the film thickness at the right end of
the sheet, hend ¼ hðsðtÞ; tÞ, vs t, on a semilog scale. The minimum
thickness may occur at the right end (see Fig. 7).

E. Varying the speed of the moving end

In the previous results, we varied surface tension number S, while
fixing the speed of the moving end at v0 ¼ 1. Now we vary the speed,
for fixed surface tension number S¼ 0.025. Figures 14 and 15 show,
for moderate and weak elasticity respectively, how the sheet thickness
(as characterized by hmin and hend) is affected when v0 varies from 0.25
to 2.5. The plots show hmin and hend vs time t, on a semilog scale; the
simulation time is extended in order to capture the long term behavior
of hend. Unsurprisingly, the faster the speed of the moving end, the
smaller hmin, for all time points, and for both moderate and weak elas-
ticity models. Comparing the minimum thickness in Figs. 14 and 15,
the trend over time is remarkably similar, although hmin is slightly
lower for the case of moderate elasticity. When v0 ¼ 2:5, the sheet

reaches the minimum threshold thickness of h¼ 0.01 between t¼ 6
and t¼ 7, in the case of both weak and moderate elasticity. We note
that in the case of moderate elasticity, as time progresses, the plots of
hend vs time for different v0-values exhibit several crossings, starting
around t¼ 4. This contrasts with the case of weak elasticity shown in
Fig. 15, where the value of hend is always monotone decreasing as v0
increases for all times in the simulation interval. This is another way in
which the model with moderate elasticity differs from that with weak
elasticity.

The moderate elasticity solutions for the sheet thickness, axial
velocity, and pressure corresponding to Fig. 14 with v0 ¼ 2 are shown
in Fig. 16. While the initial sheet profile is retained, qualitatively, under
stretching, the right end is slightly thinner than the left. The slower the
speed of the moving end, the more of the original wave is lost as time
progresses.

Figure 17 compares sheet evolution in time, for the moderate and
weak elasticity cases, for three different values of the sheet extension
speed v0 at times t¼ 0.5 and t¼ 4. At all speeds, the sheet with weak
elasticity remains symmetric about its midpoint, and retains the wave-
number of the initial condition while being stretched over the increas-
ing domain. This is not the case for moderate elasticity solutions. For
the slowest extension speed v0 ¼ 0:5, the moving end of the sheet
thins significantly, such that roughly half of the initial wave is lost by
t¼ 0.5, leading to very large differences between the weak and moder-
ate elasticity predictions. When v0 ¼ 1, more of the original shape is
retained, but the moving end still thins significantly relative to the left
end; the prediction is again substantially different from the weak

FIG. 14. Evolution of hmin and hend for moderate elasticity as the speed varies from 0.25 to 2.5. Results are for BC case I with S¼ 0.025.

FIG. 13. Evolution of the minimum sheet thickness, hmin, thickness hend at the right end of the sheet, and Dh ¼ hend � hmin, as the surface tension varies for moderate elastic-
ity. Results are for BC case I with v0 ¼ 1. In the left plot, the curve for S¼ 0.001 (in blue) lies directly under that of S¼ 0.01 (in red).
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elasticity case. The differences between the two models are least pro-
nounced for the fastest extension speed v0 ¼ 2. At both time points
shown, the moderate elasticity model yields a sheet that is only slightly
thicker over the left half than the right. The sheet thickness at the left
end remains very similar for the two models, but the moving end of
the sheet with moderate elasticity is thinner.

F. Increasing wavenumber in ICs

Imaging of the tear film has on occasion shown stripes or ridges
in the lipid layer.1 To investigate whether our model can sustain multi-
ple waves during extensional flow, we experiment with increasing the
wavenumber k0 in the initial condition Eq. (21). For all of the follow-
ing results, we use the case of moderate elasticity with BC case I and
v0 ¼ 1.

Figure 18 shows the sheet solution profiles at t¼ 0.5 and t¼ 3 for
three different values of the initial wavenumber k0. For each IC, the
sheet thickness is shown for three different values of the surface ten-
sion number, S ¼ 0:0025; 0:01, and 0.025. The lower the surface ten-
sion, the more of the original waves are retained as time progresses.
We note that the reduction of wavenumber appears to be complete by
time t¼ 0.5; after that, the resulting shape primarily stretches as the

sheet lengthens (this point is discussed further below). In particular, in
the first example with wavenumber k0 ¼ 2, both waves are retained
for the smallest value of S, while for S¼ 0.01 and S¼ 0.025, half a
wave and a full wave (respectively) are lost from the initial shape by
the final time. Similar differences are also apparent at higher wave-
numbers: for k0 ¼ 2:5 the smallest surface tension simulation
(S¼ 0.0025) loses just half a wave by the final time, while S¼ 0.01
loses a full wave and S¼ 0.025 loses 1.5 waves; and for k0 ¼ 3 the sim-
ulation for S¼ 0.0025 again loses just half a wave, while S¼ 0.01 loses
1.5 waves and S¼ 0.025 loses 2 full waves.

We further investigate simulations for S¼ 0.0025, since this value
leads to persistent waves in the sheet. For this value of S we vary the
wave amplitude b in the initial condition Eq. (21) and observe the
change of wavenumber over time as the sheet is stretched (specifically,
the number of complete waves that are lost); the results are summa-
rized in Table IV. The top row of this table corresponds to the
S¼ 0.0025 simulations of Fig. 18. We see that the value of the initial
wavenumber k0 is more influential than the initial wave amplitude b.

We also test our earlier assertion, that the reduction in wavenum-
ber appears to be determined at an early stage of the stretching, by
running simulations to larger times. We used the event detection
option in MATLAB and let the sheet stretch until hmin < 0.01 (assumed

FIG. 15. Evolution of hmin and hend for weak elasticity as the speed varies from 0.25 to 2.5. Results are for BC case I with S¼ 0.025.

FIG. 16. Solutions for sheet thickness, h, fluid velocity, u, and pressure, p, for moderate elasticity. Results are for BC case I with S¼ 0.025, and v0 ¼ 2.
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to represent sheet breakup in the model). The results are summarized
in Table V, which records the IC used in the simulation, the time to
breakup, the number of waves lost from the IC during evolution, and
whether the final extremum of sheet thickness at the moving end is a
maximum or minimum. In each case, the sheet reached this minimum
thickness threshold before any noticeable change in shape from that
noted at t¼ 0.5. When the moving end of the sheet is (or evolves to) a
local minimum, the sheet “breaks” faster than when the moving end is
a local maximum (sheet contains an integer number of full waves).
For example, the two ICs with k0 ¼ 2:5 and k0 ¼ 3 both lose half a
wave under stretching. The curve resulting from k0 ¼ 2:5 develops a
local maximum at the right end, and can stretch for more than twice

FIG. 17. Sheet thicknesses for moderate and weak elasticity models for increasing
values of extension speed v0, shown at times t¼ 0.5 and t¼ 4. The solid black
curve shows the initial sheet profile for both models at t¼ 0. Results are shown for
BC case I, with S ¼ Sw ¼ 0:025.

FIG. 18. Profiles of sheet thickness, h, at t¼ 0 (top curve in each plot), t¼ 0.5
(middle curves), and t¼ 3 (bottom curves) when the initial condition Eq. (21) has
wavenumber k0 ¼ 2, 2.5, and 3 (b ¼ 0:1; a ¼ 0:9 in all cases).
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as long as the k0 ¼ 3 simulation, which develops a local minimum
there. Figure 19 shows the sheet profiles at the time that the thickness
reaches the threshold of h¼ 0.01 for four initial conditions.
Interestingly, although the sheet profiles that have a minimum at the

moving end always appear to break first, the breakup does not always
appear at the moving end, but may happen at an interior minimum.

G. Increasing wavenumber in IC with Robin BCs

We now turn to BC case V and vary the initial shape of the film
for S¼ 0.0025. Computed results are shown in Fig. 20 for wavenum-
bers k¼ 0 (initially flat), 1, 2 and 3. For k¼ 0 (upper left), the film
quickly develops thickness variation with menisci at the ends and two
internal maxima. As the film stretches, it thins between the left (fixed)
end and the closest maximum, developing a fairly wide thin region on
the left with more fluid gathering toward the moving end. This
dynamic is much like that in Fig. 11. The two internal maxima persist
throughout the computed interval, though they both become less pro-
nounced as time progresses.

With k¼ 1 (upper right), a single internal maximum is generated.
Between the fixed end and this maximum there is thinning, but it is
much less pronounced than for k¼ 0. For k¼ 2, a second internal
maximum is generated near the fixed end, and persists thoughout the
computed interval. The maximum is pulled away from the left end, but
once again the thinning is less pronounced than for k¼ 0 or for Fig. 11.

For k¼ 3, the dynamics are more complex. An internal maxi-
mum is generated near the left end again, and it persists throughout
the computation. At the right end, the internal maximum nearest the
moving end is lost sometime shortly after t¼ 1, and the relative size of
the end point and the closest interior maximum changes during
0 < t < 1. By t¼ 4, there are just two internal maxima again and they
are less pronounced as the film stretches.

These results suggest that the Robin condition (close to Dirichlet)
at the fixed end can generate waves, and that waves can be lost at the
moving end. In either case, a thin area near the end can be generated.

TABLE IV. Table entries show number of waves lost from initial condition Eq. (21) at
t¼ 4 as amplitude b and wavenumber k0 are varied. Here, a ¼ 1� b in Eq. (21)
and S¼ 0.0025.

Wavenumber k0

Amplitude b 1 1.5 2 2.5 3 3.5 4

0.2 0 0 0 1/2 1/2 � � � � � �
0.1 0 0 0 1/2 1/2 1 1
0.05 0 0 0 1/2 1/2 1 1
0.025 0 0 0 1/2 1/2 1 1

TABLE V. Comparison of the time to reach h¼ 0.01, which represents sheet
breakup, for various initial conditions when S¼ 0.0025. Here a¼ 0.9 and b¼ 0.1.

Initial condition
Time

to h< 0.01
Waves
lost

Final extremum
at right

aþ b cosð3pxÞ 12.9935 None Minimum
aþ b cosð4pxÞ 13.4664 None Maximum
aþ b cosð5pxÞ 10.2892 1/2 Maximum
aþ b cosð6pxÞ 4.2099 1/2 Minimum
aþ b=2 cosð5pxÞ 18.2691 1/2 Maximum
aþ b=2 cosð6pxÞ 9.5259 1/2 Minimum

FIG. 19. Sheet thickness, h, at t¼ 0 (top
curve in each plot), t¼ 0.5 (second
curve), and t¼ 3 (third curve) and the
time to reach the threshold thickness of
h¼ 0.01 (bottom curve) for initial condition
Eq. (21) with a ¼ 0:9; b ¼ 0:1 and wave-
numbers k0 ¼ 1:5; 2; 2:5, and 3 with
v0 ¼ 1.
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FIG. 20. Sheet thickness, h, at t ¼ 0;
0:5; 1; 2; 4 for initial condition Eq. (21)
with a ¼ 0:9; b ¼ 0:1 and wavenumbers
k0 ¼ 0; 1; 2, and 3 with v0 ¼ 1 and
S¼ 0.0025.

FIG. 21. Location of local minima in thickness, for weak and moderate elasticity models, at t ¼ 0; 0:0625; 0:125; 0:25; 0:5; 0:75; 1; 2; 3 on a fixed domain with
S ¼ Sw ¼ 0:0025; v0 ¼ 1. From left to right, each plot corresponds to a different wavenumber: k0 ¼ 2; 2:5; 3 in Eq. (21) (with a ¼ 0:9; b ¼ 0:1). The straight black lines
emphasize that locations of thickness minima are stationary for weak elasticity on a fixed domain.

FIG. 22. Profiles of sheet thickness, h,
fluid velocity, u, and pressure, p, for the
case of weak elasticity when k0 ¼ 2.
Results are for BC case I with S¼ 0.0025
and v0 ¼ 1.
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H. Mechanisms

For weak elasticity, the oscillations contained in the initial condi-
tion are retained in the sheet throughout time, and are stretched as the
sheet lengthens. The sheet retains any symmetry in the initial condi-
tion, and the locations of minimum and maximum thicknesses are
unchanged through time when plotted in terms of the coordinate
n ¼ x=sðtÞ; see Fig. 21. The solutions for sheet thickness, velocity, and
pressure when the initial condition contains 2 waves (k0 ¼ 2) are
shown in Fig. 22. If we compare the individual terms of the PDE, as
shown in Fig. 23 (where only the right half of the domain is shown),
we see that it is primarily the extensional terms from ðhuxÞx that bal-
ance; the role of surface tension is minor. The velocity profile is nearly
linear with small fluctuations in the slope. Pressure remains negative
through the entire sheet, as extension is dominating capillarity, and
decreases in magnitude as the sheet lengthens.

However, for moderate elasticity, solutions are more complicated.
We compare the sheet thickness, velocity, and pressure when the ini-
tial condition contains either two and a half (k0 ¼ 2:5) or three
(k0 ¼ 3) waves; the solutions are shown in Figs. 24–26. When
k0 ¼ 2:5 (Fig. 24), the moving end begins as a thickness minimum.
Local low pressure draws fluid toward the moving end, and this local
minimum becomes a global maximum by time t¼ 0.5. The minimum
thickness occurs in the interior, in the trough closest to the moving
end. The early rapid movement of fluid toward the moving end is
shown in the velocity profile at t¼ 0.0625, where the velocity briefly
increases above the pulling velocity (v0 ¼ 1) near the moving end.
Fluctuations in the velocity profile smooth after this time, and the pro-
file becomes nearly linear. Pressure decays to near zero for t> 1.
Figure 25 shows the role of each term in the PDE. At early times, we
see that the terms with the highest derivatives are flipping roles. As
pressure diminishes, extensional terms take over.

When k0 ¼ 3 (Fig. 26), we see the role of pressure has changed.
Together, pressure and extension prevent fluid from keeping up with the
moving end, and the right end quickly becomes the global minimum. A
boundary layer in the velocity profile is seen to form at the right end of
the sheet in the middle column of Fig. 26. A maximum in the pressure
develops at the right end by t¼ 0.0625, and remains a global maximum
until about t¼ 0.25. The pressure diminishes thereafter.

In summary, our results for the moderate elasticity model show
that, depending on the initial condition and boundary conditions, the
number of waves in the sheet is typically reduced, and there are signifi-
cant changes in the shape of the sheet as fluid moves due to changes in
pressure. An exception was for BC case V in Fig. 20 with k0 ¼ 2 where
additional maxima appeared inside the domain. Model parameters, in

particular the surface tension number S, can also strongly influence
the number of waves retained in the sheet under extension; in this sub-
section such model parameters were fixed. At early times, pressure
either cooperates with or opposes extension at the moving end, which
redistributes fluid there and may result in the loss of a maximum or
minimum in the sheet thickness there. When a maximum is lost from
the moving end, a boundary layer forms in the velocity profile. As
time increases, the pressure decreases in magnitude, its influence on
the shape of the sheet decreases, and the role of the extension becomes

FIG. 23. Individual terms in the axial force balance Eq. (5) for the case of weak elasticity shown in Fig. 22 (k0 ¼ 2). Note that only the right half of the domain is shown, and
the scale of the vertical axis changes in the final plot.

FIG. 24. Sheet thickness, h, fluid velocity, u, and pressure, p, for the case of mod-
erate elasticity when the initial condition has two and a half waves (k0 ¼ 2:5).
Results are for BC case I with S¼ 0.0025 and v0 ¼ 1. Each row represents a time
level; each column shows the respective dependent variable.
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more pronounced. In general, the roles of pressure and extension are
more intertwined than in the case of weak elasticity.

V. DISCUSSION AND CONCLUSION

We present a new model for describing the extensional 2D flow
of nematic liquid crystal sheets with moderate elasticity, and compare
results to the analogous weak elasticity model. For moderate elasticity,
the pressure, surface tension and elastic energy were all promoted to
larger values compared to the weak elasticity case studied by
Cummings et al.43 The axial force balance, Eq. (14), in the new model
is of higher spatial order than the model for weak elasticity; in terms of
the sheet thickness, the equation is fourth order rather than third in
spatial derivatives. This change necessitates an additional boundary
condition. Consideration of the individual terms in the sheet tension
in Eq. (20) motivated the additional condition that we used,
pxð0; tÞ ¼ 0. Numerical exploration suggested that the single equation
Eq. (16), describing the sheet profile evolution, may be viewed as being
dispersive, and that the additional boundary condition may be consid-
ered as specifying the value for an incoming characteristic.

For initial conditions, we use sinusoidal curves, and we explore a
range of initial wavenumbers. Further work could include formulating
a consistent initial condition for a Dirichlet condition on either end.
We examine the effect of varying surface tension and the speed of the
moving end on the dynamics of the evolving sheet under stretching.

The response of the moderately elastic sheet is markedly different
from that of weak elasticity or Newtonian fluids. Cummings et al.43

modeled liquid crystal sheets with weak elasticity, however that work
focused primarily on the effect of an electric field on the liquid crystal.
For liquid crystals with moderate elasticity, the elastic quality of the
material is demonstrated well in Fig. 21, which shows a recoil in the
location of minima in a sheet with multiple waves. In the case of weak

elasticity, the minima maintain their relative position in the sheet
while undergoing stretching. In Fig. 12, we show that, depending on
the initial condition, the minimum sheet thickness can occur at almost
any position in the sheet, from the very right end, to close to the left
end. When varying the surface tension, we again see the elastic quality
of the material; see Fig. 13. When varying the speed of the moving
end, we see that for the same speed, the sheet with moderate elasticity
thins slightly faster than in the case of weak elasticity; see Fig. 14.

We also considered dynamics for different initial wavenumbers
in the sheet profile. We increase the number of waves in the initial
condition, and observe the shape of the sheet as it undergoes stretch-
ing. We find, as might be expected, that the higher the surface tension,
the more waves are lost from the initial shape under stretching. The
amplitude of the waves has much less influence than the number of
waves, as seen in Table IV. At early times, depending on the number
of sinusoidal waves in the initial condition, pressure either aids or
opposes extensional flow, which changes the shape of the sheet and
may result in the loss of a minimum or maximum at the moving end.
When a maximum is lost from the moving end, and specifically when
the moving end switches from a maximum to a minimum, we see a
boundary layer form in the velocity profile. Fluid flows quickly out of
the region at the end, and the sheet is unable to stretch for very long
times before numerics fail. This illustrates the more prominent role
that pressure plays in determining the shape of the sheet with moder-
ate elasticity; see, for example, Fig. 25.

The menisci that develop in the thickness profiles when using
Robin boundary conditions for moderate elasticity are reminiscent of
the profiles found by several previous authors54–61 for the aqueous
layer of the tear film during a blink. Specifically, BC case III (Robin
condition at the moving end) yields profiles comparable to those of
the tear film during the upstroke of a blink. BC case IV (Robin

FIG. 25. Individual terms in the axial force balance Eq. (18) for the case of moderate elasticity whose full profiles are shown in the previous Fig. 24 (k0 ¼ 2:5); only half the
domain is shown here. Note that the scale of the vertical axis changes on the second row.
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condition at the fixed end) is similar to the meniscus corresponding to
the lower lid during the upstroke when the upper lid would be moving
away from it.

We note that weak and moderate elasticity limits were considered
for a nematic liquid crystal film on a substrate by Lin et al.44 Those
authors found that a larger scaling for the elastic terms (only) intro-
duced an additional term in the single nonlinear PDE for the thickness
h; the new term was diffusion-like and is similar to the effect of gravity
in Newtonian films.62 In our work, there is no substrate for the free
film, and compared to the weakly elastic limit, we made both the elas-
tic and surface tension parameters larger. As a result, we scaled the
pressure to be larger, and the new balance gave us two PDEs, one each
for the film thickness h and axial velocity u, as is typical for extensional
flow.43 The results reported here clearly show elastic behavior, and
likely more obviously than the model found by Lin et al.44

There are some limitations with our model in terms of computing
for a longer time interval for a wider range of parameter values. Both
the finite differences and spectral methods work well up until t¼ 3,
and for some parameter values, much longer than that; however, to run
other cases for longer time may require domain decomposition or an
adaptive method to adequately resolve regions of small thickness.63

Scenarios that result in beads on a string40,41 involve much more

extension and longer computation times than we studied; it is unclear
what patterns would result if we were to apply more complicated
numerical methods to long times in our setting.

We shall continue developing more physiologically relevant mod-
els for the lipid layer of the tear film in the eye. This will require using
more realistic parameter values, and modifying the sheet’s end speed to
be more realistic.32,33,56,59 We have a model in hand with a shear-
dominated aqueous layer added to the lipid layer in the spirit of previ-
ous works.52,64–66 Much work remains to connect the dynamics of such
models to the observed patterns of the lipid layer in the tear film.
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APPENDIX A: DERIVATIONS

1. Ericksen–Leslie equations

The Ericksen–Leslie equations describe the flow of nematic liq-
uid crystals, and are based on principles of conservation of mass,
momentum and energy. In dimensional form, with a prime denot-
ing a dimensional quantity,

@

@x0
@W 0

@hx

� �
þ @

@z0
@W 0

@hz

� �
� @W

0

@h
þ ~g 0x

@nx
@h
þ ~g 0z

@nz
@h
¼ 0; (A1)

� @p
0

@x0
þ ~g 0x

@nx
@x0
þ ~g 0z

@nz
@x0
þ @r

V 0
xz

@z0
þ @r

V 0
xx

@x0
¼ 0; (A2)

� @p
0

@z0
þ ~g 0x

@nx
@z0
þ ~g 0z

@nz
@z0
þ @r

V 0
zx

@x0
þ @r

V 0
zz

@z0
¼ 0; (A3)

@v0

@x0
þ @w

0

@z0
¼ 0; (A4)

FIG. 26. Profiles of sheet thickness, h, fluid velocity, u, and pressure, p, for the
case of moderate elasticity when the initial condition has three waves (k0 ¼ 3) and
S¼ 0.0025. Each row represents a time level; each column shows the dynamics of
the respective dependent variable.
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where

~g 0i ¼ �c1N
0
i � c2e

0
iknk; e0ij ¼

1
2

@v0i
@x0j
þ
@v0j
@x0i

 !
; (A5)

N 0i ¼
Dn0i
Dt
� x0iknk; x0ij ¼

1
2

@v0i
@x0j
�
@v0j
@x0i

 !
; p0 ¼ p0 þW 0; (A6)

W 0 ¼ 1
2

K1ðr0 � nÞ2 þK2ðn � r0 �nÞ2 þK3ððn � r0ÞnÞ � ððn � r0ÞnÞ
� �

;

(A7)

rV 0
ij ¼ a01nknpe

0
kpninj þ a02N

0
i nj þ a03N

0
jni þ a04e

0
ij þ a05e

0
iknknj

þ a06e
0
jknkni; (A8)

rE0 ¼W 0
rn � ðrnÞT ; (A9)

r0 ¼ �p0Iþ rE0 þ rV 0 : (A10)

Here I is the identity tensor, summation over the repeated indices is
understood, and D

Dt ¼ @=@t þ v � r denotes the convective deriva-
tive. We use bold font for vectors relating to the liquid crystal, while
italics are used for the normal and tangent vectors on the surface, as
seen in the following paragraphs. We take K ¼ K1 ¼ K2 ¼ K3 to be
the one-constant approximation to the elastic constants, with K1

being the single value used.43,47 The quantities defined above are
described in Table VI. In two dimensions, the energy and the stress
tensor then simplify to

W 0 ¼ K
2
ðh2x0 þ h2z0 Þ; (A11)

r0 ¼ �p0
1 0

0 1

" #
� K

h2x0 hx0hz0

h2z0 hx0hz0

" #
þ

rV 0
11 rV 0

12

rV 0
21 rV 0

22

" #
: (A12)

The fully expanded version of r0 is very lengthy; for an explicit pre-
sentation, see Lin et al.44

We solve the governing equations subject to the boundary con-
ditions that follow. We list the boundary conditions for the top sur-
face, z0 ¼ 1

2 h
0ðx0; t0Þ only; those for the bottom surface,

z0 ¼ � 1
2 h
0ðx0; t0Þ, are defined analogously. The normal stress condi-

tion is

n̂0 � r0 � n̂0 ¼ �c0j0n̂0 at z ¼ 1
2
h0ðx0; t0Þ; (A13)

where n̂0 ¼ ð�h0x0=2; 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh0x0=2Þ

2
q

is the unit vector normal to

the top surface, and j0 ¼ �r � n̂0 is the curvature of the top surface.
The definition of r0 is taken from Lin et al.,44 and contains an addi-
tional term from the form given in Cummings et al.43 The tangen-
tial stress condition is

n̂0 � r0 � t̂ 0 ¼ 0 at z0 ¼ 1
2
h0ðx0; t0Þ; (A14)

where t̂
0 ¼ ð1; h0x0=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh0x0=2Þ

2
q

is the unit vector tangent to
the top surface. The kinematic boundary condition is

w0 ¼ 1
2

h0t0 þ u0h0x0
� �

at z0 ¼ 1
2
h0ðx0; t0Þ: (A15)

Finally, the anchoring boundary condition is

h ¼ hB at z0 ¼ 1
2
h0ðx0; t0Þ: (A16)

2. Scalings for weak elasticity

The scalings for weak elasticity are as in Eqs. (1) and (2), along
with

N̂ w ¼
K

lÛdL
; W 0 ¼ K

d2L2
W; a0i ¼ lai:

Nondimensionalizing with these scalings yields

N̂
@
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� �
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� �
� N̂
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@h
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@nz
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(A17)

�d2
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V
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(A18)

�d
@p
@z
� N̂

@W
@z
þ gx

@nx
@z
þ gz

@nz
@z
þ d

@rV
zx

@x
þ @r

V
zz

@z
¼ 0: (A19)

Then, the leading order system of equations is

ht þ ðhuÞx ¼ 0; (A20)

FðhBÞ
GðhBÞ

ðhuxÞx þ
Sw
2
hhxxx ¼ 0; (A21)

where

TABLE VI. Parameters and variables used in the model.47

Quantity Description

v0 ¼ ðu0;w0Þ Velocity field of the flow
n ¼ ðsin h; cos hÞ Director field
hðx; z; tÞ Angle the director angle

makes with the z-axis
p0 Pressure
W 0 Bulk energy density
p0 ¼ p0 þW 0 Modified pressure

rV 0
ij

Viscous stress tensor

rE0
ij

Elastic stress tensor

r0 Stress tensor
a0i; i ¼ 1;…; 6 Leslie viscosities

(Newtonian: l0 ¼ a04=2, all other ai ¼ 0)
c01 ¼ a03 � a02 Rotational/twist viscosity
c02 ¼ a06 � a05 Torsion coefficient
K1; K2; K3 Elastic constants representing splay,

twist, and bend respectively
x0ij Vorticity tensor

e0ij Rate of strain tensor

Ni Co-rotational time flux of the director n
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GðhBÞ ¼ a1 � 2a2 þ 2a3 þ 8þ 2a5 þ 2a6 � a1 cosð4hBÞ
�2 cosð2hBÞða2 þ a3 � a5 þ a6Þ; (A22)

FðhBÞ ¼a1ð�a2þ a3þ 8þ 2a5þ 2a6Þ� a2ð8þ a5þ 3a6Þ
þa3ð8þ a5þ a6Þþ 32þ a5ð16þ 2a5þ 4a6Þþ a6ð16þ 2a6Þ
�2cosð2hBÞða1þ 4þ a5þ a6Þða2þ a3� a5þ a6Þ
�cosð4hBÞ a1a2� a1a3þða2þ a3Þða5� a6Þ½ �: (A23)

In the Newtonian case, viscosities ai ¼ 0, (i ¼ 1; 2; 3; 5; 6), and
FðhBÞ=GðhBÞ ¼ 4.

3. Deriving the equations for moderate elasticity

To consider the case of moderate elasticity, we rescale the
inverse Ericksen number, the pressure, and the surface tension
number as in Eq. (11), while keeping the other scalings the same.
Then, the nondimensionalized governing equations become

N̂
@
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@W
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þ N̂
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� N̂
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@nz
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(A24)
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@z
þ dgz

@nz
@z
þ d2

@rV
zx

@x
þ d

@rV
zz

@z
¼ 0:

(A26)

Now we asymptotically expand the dependent variables in powers
of d ¼ ĥ=L. For example,

u ¼ u0ðx; z; tÞ þ d u1ðx; z; tÞ þ d2 u2ðx; z; tÞ þ � � � ;

and we do the same for h; v; p; and h. We substitute these into the
governing equations and boundary conditions, and then collect like
powers of d. Then at O(1), the equations inside the sheet,
�h0=2 < z < h0=2, are

1
2
ða2 þ a3 � a5 þ a6 þ 2a1 cos 2h0Þ sin 2h0u0zh0z � N̂h0zh0zz

þ 1
2

2þ ða5 � a2Þ cos2h0 þ ða3 þ a6Þ sin2h0 þ
1
2
a1 sin

22h0

	 

u0zz ¼ 0; (A27)

�N̂h0zh0zz ¼ 0; (A28)

N̂h0zz ¼ 0; (A29)

u0x þ w0z ¼ 0: (A30)

On the sheet surface z ¼ h0=2, the O(1) equations are

�N̂h20z ¼ 0; (A31)

1
2

2þ ða5 � a2Þ cos2h0 þ ða3 þ a6Þ sin2h0 þ
1
2
a1 sin

22h0

	 

u0z

� 1
2
N̂h20zh0x � N̂h0zh0x ¼ 0; (A32)

w0 �
1
2
ðh0t þ u0h0xÞ ¼ 0; (A33)

h0 � hB ¼ 0: (A34)

In order, these equations represent momentum in the x and z-compo-
nents respectively; energy; and continuity; followed by the boundary
conditions on the top surface: normal and tangential stress, kinematic,
and anchoring. Solving these leading order equations, we obtain

h0 ¼ hB; (A35)

u0 ¼ u0ðx; tÞ; (A36)

w0 ¼ w0ðx; z; tÞ ¼ �u0xz; (A37)

h0t þ ðu0h0Þx ¼ 0; (A38)

where Eq. (A38) is the mass balance equation and Eq. (A37) is the
transverse velocity. As is typical in such flow models, we get a sim-
ple leading order equation for the transverse velocity that comes
from integrating mass conservation Eq. (A30); the axial velocity u is
independent of depth, and so w0 is a linear function of z. At O(1),
we cannot determine u0, so to close the system, we continue on to
order d. After making the above substitutions, the OðdÞ equations
inside the sheet, �h0=2 < z < h0=2, are

1
8
8þ a1 � 2ða2 þ a3 þ a5 þ a6Þ � 2ða2 þ a3 � a5 þ a6Þ cos 2hB½

�a1 cos 4hB�u1zz � p0x ¼ 0; (A39)

p0z ¼ 0; (A40)

N̂h1zz ¼ 0; (A41)

u1x þ w1z ¼ 0: (A42)

On the sheet surface z ¼ h0=2, the OðdÞ equations are

p0 þ
S
2
h0xx ¼ 0; (A43)

� 1
2
ða1 cos 2hB � a5 þ a6Þ sin 2hBu0x þ

1
4

�
4� 2ða2 � a5Þ cos 2hB

þ 2ða3 þ a6Þ sin 2hB þ a1 sin
22hB

�
u1z ¼ 0; (A44)

w1 �
1
2
ðh1t þ u1h0x þ u0h1xÞ ¼ 0; (A45)

h1 ¼ 0: (A46)

Solving, we obtain

p0ðx; tÞ ¼ �
S
2
h0xx; (A47)

u1ðx; z; tÞ ¼
p0x

FðhBÞ
z2

2
� h0

2
z

� �
� AðhB; u0xÞ

BðhBÞ
z þ Kðx; tÞ; (A48)

h1ðx; z; tÞ ¼ 0; (A49)

where

AðhB; u0xÞ ¼ 2ða1 cos 2hB � a5 þ a6Þ sin 2hBu0x; (A50)

BðhBÞ ¼ a1 sin
22hB � 2ða2 � a5Þ cos2hB þ 2ða3 þ a6Þ sin2hB þ 4;

(A51)

and K(x, t) is as yet unknown. To close the system, we must proceed
to Oðd2Þ to find an equation for u0. We make the above substitu-
tions, in addition to the substitution w1zz ¼ �u1xz , obtained from
differentiating the continuity equation. At this order, the equations
are too long to be profitably displayed in their entirety, so we sum-
marize the steps. First, we use z-momentum and the normal stress
condition to determine
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p1ðx; z; tÞ ¼ G1ðhBÞu0x þH1ðhBÞSð2z � h0Þh0xxx �
S
2
h1xx; (A52)

where

G1ðhBÞ ¼
1
4
�8� a1 � 2a5 � 2a6 � 2ða1 þ a5 þ a6Þ cos 2hB � a1 cos 4hB½ �

þ ð�a1 � a2 � a3 � a5 � a6 � a1 cos 2hBÞð�a5 þ a6 þ a1 cos 2hBÞ sin 2h2B
8þ a1 � 2a2 þ 2a3 þ 2a5 þ 2a6 � 2ða2 þ a3 � a5 þ a6Þ cos 2hB � a1 cos 4hB

;

H1ðhBÞ ¼
ð�a1 � a2 � a3 � a5 � a6 � a1 cos 2hBÞ sin 2hB

2 8þ a1 � 2a2 þ 2a3 þ 2a5 þ 2a6 � 2ða2 þ a3 � a5 þ a6Þ cos 2hB � a1 cos 4hB½ � :

Then, substituting p1 and others into x-momentum Eq. (A40), we
solve for u2zz and integrate across the sheet. From the tangential
stress condition we obtain the solvability condition, which leads to

B2ðhBÞ
A2ðhBÞ

h0u0xð Þx þ
C2ðhBÞ
A2ðhBÞ

Sðh20h0xxxÞx þ 4Sh0h1xxx ¼ 0; (A53)

where

A2ðhBÞ ¼ 8þ a1 � 2a2 þ 2a3 þ 2a5 þ 2a6;

�2ða2 þ a3 � a5 þ a6Þ cos 2hB � a1 cos 4hB; (A54)

B2ðhBÞ ¼ � 4 2a1a2 þ 2a1a3 � 2a1a5 þ 2a1a6½ � cos 6hB
� 4 �64� 16a1 � a21 þ 16a2 þ 2a1a2 � 16a3 � 2a1a3
�

� 32a5 � 4a1a5 þ 6a2a5 � 2a3a5 � 4a25 � 32a6 � 4a1a6
þ 2a2a6 � 6a3a6 � 8a5a6 � 4a26 þ 2ða2 þ a3 � a5 þ a6Þ
� ða1 þ 2 4þ a5 þ a6½ �Þ cos 2hB þ 2ða1 a2 � a3½ �
� a2 þ a3½ � a5 � a6½ �Þ cos 4hB þ a21 cos 8hB�; (A55)

C2ðhBÞ ¼ �8ða2 þ a3 þ a1 cos 2hBÞ sin hB: (A56)

Note that the undetermined function K(x, t) from u1 does not
appear in the solvability condition. However, if take the continuity
equation from OðdÞ, integrate with respect to z, and apply the kine-
matic boundary conditions, we find

h1t þ u0h1x þ ½h0Kðx; tÞ�x �
S

6A2ðhBÞ
ðh30h0xxxÞx ¼ 0; (A57)

where A2ðhBÞ is as defined above.
As observed by Howell,67 the OðdÞ term for h does not con-

tribute to the derivation of the leading order problem, and so

hðx; tÞ ¼ h0ðx; tÞ þ d2h2ðx; tÞ þ Oðd3Þ: (A58)

Then Eqs. (A38), (A53), and (A57) simplify to

h0t þ ðu0h0Þx ¼ 0; (A59)

B2ðhBÞ h0u0xð Þx þ C2ðhBÞSðh20h0xxxÞx ¼ 0; (A60)

½h0Kðx; tÞ�x �
S

6A2ðhBÞ
ðh30h0xxxÞx ¼ 0: (A61)

We thus have three equations with three unknowns: u0ðx; tÞ; h0ðx; tÞ;
and K(x, t). We solve for K(x, t) by integrating Eq. (A61) with respect
to x. We determine the constant of integration by integrating u1
through the depth; no net flux along the film due to u1 results in

Kðx; tÞ ¼ S
2
h20h0xxx
3A2ðhBÞ

; (A62)

u1ðx; z; tÞ ¼
p0x

FðhBÞ
z2

2
� h0

2
z

� �
� AðhB; u0xÞ

BðhBÞ
z þ S

2
h20h0xxx
3A2ðhBÞ

:

(A63)

Using u1, we can solve mass conservation Eq. (A42) to find w1. This
term will be a cubic in z, and will thus be smooth and bounded. As
a result, the term dw1 remains small and will not affect the leading
order dynamics. Then, to find the axial velocity u0 and the sheet
thickness h0, we can solve the coupled system

h0t þ ðu0h0Þx ¼ 0; (A64)

h0u0xð Þx þ ~Sðh20h0xxxÞx ¼ 0; (A65)

where

~S ¼ C2ðhBÞ
B2ðhBÞ

S: (A66)

In the paper we take ~S ¼ S.

APPENDIX B: VALIDATION OF NUMERICAL METHODS

When solving the system numerically, we discretized over
0� n � 1 using both finite difference with uniform spacing
Dn¼ 1=n and Chebyshev spectral discretizations using mþ 1
(mapped) Chebyshev points. We validated the two methods using
solutions obtained for the thickness of the sheet in the case of weak
elasticity with BC case I, an initial condition containing one wave
(k0 ¼ 1), v0 ¼ 1, and S¼ 0.0025, using increasing resolution. For
the finite difference method we compared solutions from grids with
n¼ 64, 96, 128, 256, and 512; for the spectral method, we used
m¼ 64, 96, and 128. First, all solutions were interpolated onto a
uniform grid of with n¼ 512. Then, we calculated the relative error
estimate at the final time of t¼ 3, using the finest resolution for the
respective method as the reference. So for example, for the spectral
method, the relative error estimate using m¼ 64 was calculated as

jjhsp;128 � hsp;64jj2
jjhsp;128jj2

;

where hsp;64 represents the solution vector obtained with that spac-
ing at the final time. The results are shown in Table VII, and verify
that both methods are converging.
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