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A b s t r a c t - - D i f f e r e n t i a t i o n  matr ices  obtained with infinitely smoo th  radial basis function (RBF) 
collocation methods  have, under  many  conditions,  eigenvalues with positive real part ,  prevent ing 
the  use of such methods  for t ime-dependent  problems. We explore this  difficulty at theoretical and 
practical levels. Theoretically, we prove tha t  differentiation matr ices  for conditionally positive def- 
inite RBFs  are stable for periodic domains.  We also show tha t  for Gauss ian  RBFs,  special node 
dis tr ibut ions can achieve stabil i ty in 1-D and tensor-product  nonperiodic domains.  As a more practi- 
cal approach for bounded domains,  we consider differentiation matr ices  based on least-squares RBF 
approximat ions  and  show tha t  such schemes can lead to stable me thods  on less regular  nodes. By sep- 
arat ing centers and nodes, least-squares techniques open the  possibility of the  separat ion of accuracy 
and  stabil i ty characteristics. @ 2006 Elsevier Ltd. All r ights reserved. 

K e y w o r d s - - R a d i a l  basis functions, RBF,  Method of lines, Numerical  stability, Lea~t squares.  

1. I N T R O D U C T I O N  

RBFs are increasingly being used in the numerical solution of partial differential equations [1 5], 
and are a viable alternative to more traditional methods, such as finite differences, finite elements, 
and spectral methods. RBF-based methods have several attractive features, most notably fast 
convergence (exponential for some cases) and the flexibility in the choice of node location. In 
the presence of rounding errors, however, it is often difficult to obtain highly accurate resul ts--  
see, e.g., [5 7]. For t ime-dependent problems, in particular, differentiation matrices often have 
unstable eigenvalues requiring severe dissipation in time. In this article, we are concerned with 
finding effective ways to solve time-dependent problems using RBFs. 

Given a set of cen ters  z~), . . . ,  x~v in 7~ d, an RBF approximation takes the form 

N 

F(z )  = E A k  ~b ( l l a -  a~ll) , (1) 
k=O 

where I I  II denotes the Euclidean distance between two points and ¢(r)  is a function defined for 
r >_ 0. The coefficients A1, . . . ,  AN may be chosen by interpolation or other conditions at a set of 
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nodes that  typically coincide with the centers. In this article, however, we may allow node and 
center locations to differ. Common choices for ¢ fall into two main categories: infinitely smooth 
and containing a free parameter,  such as multiquadrics (¢(r) = v / ~ +  c2), inverse quadratics 

(1/(c ~ + r2)) and Gaussians (¢(r) = e-(~/c)2); and piecewise smooth and parameter-free, such as 
cubics (¢(r) = r 3) and thin plate splines (¢(r) = r 2 lnr) .  

Although several authors have investigated RBF-methods  for t ime-dependent problems [2,3,8], 
these methods remain underdeveloped compared to those for elliptic problems. In this article, 
we are particularly interested in using the method of lines. In periodic regions, like the unit 
circle and the unit sphere, we prove in Section 2.2 that  RBF methods are time-stable for all 
conditionally positive definite RBFs and node distributions. However, in nonperiodic domains 
experience suggests tha t  RBFs will produce discretizations tha t  are unstable in time unless highly 
dissipative time stepping is used. 

In [9], we exploited a connection between Gaussians RBFs (GRBFs) in 1-D and polynomials. 
Using standard tools of potential theory, we found that  GRBFs are susceptible to a Runge 
phenomenon. Moreover, we found that  the use of GRBFs  with arbi t rary nodes may lead to 
very large Lebesgue constants, making it difficult to obtain very accurate approximations. Using 
potential theory, however, one can obtain stable nodes tha t  prevent the Runge phenomenon 
and allow stable approximations. One way to stabilize RBF-approximations for time-dependent 
problems is to use these special nodes to generate differentiation matrices, as we show in Section 3. 

Stable nodes, however, are not known for general regions in high dimensions and are not suitable 
for adaptive resolution. A viable alternative for stabilizing RBFs  in t ime-dependent problems is 
the use of least-squares techniques. In Section 4, we explore a discrete least-squares method that  
has the simplicity of collocation for nonlinearities and the like, yet allows stable explicit time 
integration. Section 5 contains our final remarks. 

2.  R B F S  A N D  T H E  M E T H O D  O F  L I N E S  

The method of lines refers to the idea of semidiscretizing in space and using s tandard methods 
for the resulting system of ordinary differential equations in time. A rule of thumb is tha t  the 
method of lines is stable if the eigenvalues of the spatial diseretized operator, scaled by the time- 
step At, lie in the stability region of the time-discretization operator, al though in some cases the 
details of stability are more technical and restrictive [10]. 

2.1. U n s t a b l e  E i g e n v a l u e s :  A C a s e  S t u d y  

Consider as a test problem the transport  equation, 

ut =Ux,  - 1  < x < l ,  t > 0 ,  (2) 

~( t ,1 )  = o, ~(o ,~)  = ~o(x).  (3) 

A differentiation matrix for this problem can be easily obtained by noting that  u = AA and u× = 

BA, where A and B are matrices with elements Aid = ¢(11 xi-x~l l )  and Bi, j  = d ¢(11 x _  x~ ii)1 . . . . .  
xj  are N + 1 collocation nodes, u and Ux are vectors containing the RBF  approximations of the 
function u and ux at the collocation nodes, and A is the vector of the coefficients Aj. The 
differentiation matrix is then given b y / )  = B A  -1. In order to enforce the boundary  condition, 
assuming that  XN = 1, we delete the last row and column o f / 9  to produce a matrix we now 
call D. This leads to the coupled system of ordinary differential equations 

ut = D u .  (4) 

The difficulty of using the method of lines with RBFs for (2),(3) with arbi t rary nodes is tha t  
some eigenvalues of the differentiation matrix may have positive real parts. This is illustrated 
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Figure 1. Eigenvalues of D for GRBFs with equally spaced nodes in [-1, 1]. 

in Figure 1. This  figure was obta ined  with G R B F s  using coincident,  equally spaced centers and 
nodes in [ -1 ,  1]. In Figure l a  the shape pa ramete r  is fixed, c = 1. Notice tha t  for N = 5 
all eigenvalues have negative real par t ,  but  as N is increased eigenvalues move to the  right half- 

plane making it difficult to use explicit  finite-difference methods  for t ime integrat ion.  Similarly, in 

Figure  l b  we observe tha t ,  for fixed N,  eigenvalues move to the right half-plane as c is increased. 

I t  is well known tha t  the  l imit  c ~ oo is equivalent to polynomial  in terpola t ion  so tha t  the 

Runge phenomenon causes instabili ty.  While  exper iments  indicate  tha t  for a given N,  the shape 

pa ramete r  c can be chosen small enough tha t  all eigenvalues will lie in the left half-plane, this  
requirement  is ra ther  restr ict ive for large values of N - - t o  the extent  t ha t  spect ra l  convergence 

seems to be compromised.  

2.2. S p e c t r a  in  t h e  A b s e n c e  o f  B o u n d a r i e s  

In polynomial  approximat ion,  boundar ies  play a major  role in stabil i ty.  Similar  observations 

have been made exper imenta l ly  in R B F  approximat ion  [11]. There  is reason to think,  then, tha t  

in the absence of boundar ies  (e.g., the  differentiation m a t r i x / ) ) ,  eigenvalue s tab i l i ty  is possible. 

In this section we show tha t  this  is indeed the case. 

We shall  need the concept of condit ional ly posit ive definite functions. A radial  function 

¢ : T¢ ~ C is called condi t ional ly  posit ive definite of order m if for any set of dis t inct  nodes 

xo, x l , . . . ,  X N,  and for all % E C N-l-1 \ {O} satisfying 

N 

Z  jp(xj) = 0, (5) 
j=0 

for all polynomials  p of degree less than  m, the  quadra t ic  form 

N N 

Z  i j¢(llxi - xj II) (6) 
i = 0  j = 0  

is posit ive [12]. In this  case, it is common to augment  expansion (1) wi th  a polynomial  of degree 

at  most m - 1  in order to impose (5). For the rest of this  section we shall  assume tha t  in terpola t ion 

nodes and centers coincide, i.e., x j  = x~.  The augmented  R B F  expansion at these nodes takes 

the form 
N r n -  1 

=  j¢(ll i - x j  II) + (7) 
j = 0  k = 0  

where {P0, P l , .  • •, P-~-1 } is a basis for the  space of d-variate polynomials  of degree at  most  m - 1. 
At  this  point,  we are interested in the  spec t rum of the f ini te-dimensional  R B F  opera tors  tha t  
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represent  a differential opera tor  with constant  coefficients/2, like the  Laplac ian  or a convection 

operator .  

We can wri te  (5) and (7) in mat r ix  form, 

(8) 

where the elements of A are Aid = ¢(][xi - xjll), the elements of P are Pi,j = pj (x , ) ,  and 
Fi = F(x i ) .  An R B F  discret izat ion of the  op e ra to r / 2  can then be wr i t t en  as 

L = [ A  L pL]  p r  , (9) 

where A~). ~,~ = £¢(11 ~ - xjll)  I . . . . . .  P. ~ u = @y(x ) l  . . . . .  and IN+I is the  ident i ty  mat r ix  of order 
N + 1. We shall  next  show tha t  the eigenvalues of L are purely imaginary  if A L is an t i symmetr ie ,  

and real if A L is symmetr ic .  We point  out tha t  for posit ive definite RBFs ,  the res t r ic t ion tha t  £ 
must  have constant  coefficients can be dropped,  and only l inear i ty  is needed. 

Suppose that ~ is an eigenvalue of L with eigenvector u. Then we have tha t  

L u  = L,u ~ AL.,x -t- pLc~ = L,(AA + Pc~) and P T A  = 0. 

Notice tha t  A*P = A * P  L = 0 and (6) gives ,k*A,k > 0, where • denotes  the  complex conjugate  

t ranspose.  Therefore, we obta in  
.X*ALA 

1 2  - -  - -  

A*AA ' 

and since A is symmetr ic ,  
- A*(AL)TA 

A*AA 

Thus, if A L is symmetr ic ,  we have tha t  ~ = F, and if it  is an t i symmetr ic ,  ~ = - p .  

Gaussians  and inverse quadrat ics  are posit ive definite RBFs  and mul t iquadr ics  are condit ion- 

ally positive definite of order  1 [12]. Moreover, the  ma t r ix  of e lements  d ¢ ( n x  - xjH)l~=x , is 

ant isymmetr ic .  Hence, D has only imaginary  eigenvalues. 

For condi t ional ly  posit ive definite RBFs,  therefore, deviat ions of the  spec t rum from the imag- 

inary  axis occur when bounda ry  conditions are enforced in D to generate  D. RBFs  methods  for 

differential equat ions on the unit  circle or unit  sphere, on the  other  hand,  are boundary-condi t ion  
free, making R B F  methods  sui table for t ime-dependent  problems on such regions. 

Differential equat ions wi th  periodic boundary  condit ions on a interval  of the  real line can be 
na tura l ly  m a p p e d  to a bounda ry  condit ion free problem on the unit  circle. For instance, solving 

ut = u~ with per iodic  bounda ry  conditions in [0, 27r] is equivalent to  solving ut - uo on the  unit  

circle, where 0 is the polar  angle. Considering the norm H x i -  x j  H = V/2 - 2 cos(0i - Oj), one can 

easily show, in light of the observations above, t ha t  the R B F  differentiat ion ma t r ix  in this  case 

has only imaginary  eigenvalues 

Similarly, problems on the unit  sphere are boundm'y-free.  As an example ,  consider the convec- 
tive test  problem presented in [13], 

ut ÷ (cos c~ - t an  0 sin ~ sin c~)%, -- (cos ~ sin c~)u0 = 0, (lo) 

where c~ is constant  and the spherical  coordinates  are defined by z = c o s 0 c o s ~ ,  y = c o s 0 s i n p ,  

and z = sin ~. We again consider the Eucl idean metric,  so for nodes z j  on the  sphere,  I Iz~-zj  ii ~ = 

2 -  2(cos 0i cos 0 o cos(~i - ~ j ) + s i n  Oi sin 0j). To demons t ra te  t ha t  explici t  t ime in tegra tors  with a 
positive definite R B F  can be s tab ly  used for this problem, all t ha t  is needed is to show tha t  A L for 
the opera tor  £( . )  = (cos c~ - t an  0 sin ~ sin a )0~( . )  + (cos p sin c~)00(.) is ant isymmetr ic .  Notice 
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Figure 2. Eigenvalues of /9  on the unit circle with equally spaced centers and nodes: 
set of centers and nodes coincide (o); nodes are shifted 0.01 units from centers (+). 

since this is not  a constant  coefficient operator ,  so imaginary  spec t rum can only be proved for 

positive definite RBFs.  St ra ightforward calculat ions show tha t  

de(,-) 

• (cos a cos 0i cos Oj sin(~i  - ~ ; )  + sin a (eos  0i sin O; cos ~i  - cos Oj sin 0~ cos p j ) ) ,  

which is indeed ant isymmetr ic .  

I t  is worth  point ing out  t ha t  the spec t rum o f / )  in such condit ions is sensitive to per turba t ions  
on the nodes, i.e., small  deviat ions of the set of nodes from the set of centers is likely to generate 

unstable  eigenvalues. In Figure  2, the  spec t ra  of two differentiat ion matr ices  are shown for 
the periodic t r anspor t  problem on the unit  circle. Both  matr ices  were ob ta ined  with  equally 

spaced centers and nodes, GRBFs ,  N = 13, and c = 1. In the first case, we considered centers 
0~ = 27rj/14, j = 0 , . . . ,  13, and nodes 0j = 0~. Imaginary  spec t rum is guaran teed  in this case 
and the numerical  results  agree wi th  this prediction. In the  second ease, we used Oj = 0~ + 0.01. 
The  mat r ix  ob ta ined  in this  instance has real eigenvalues as shown in the figure• 

In the remainder  of this  article, we shall explore ways to stabil ize R B F  methods  for t ime- 

dependent  problems with bounda ry  conditions• We shall next  s tudy  how the in terpola t ion  nodes 

can be used to avoid unstable  eigenvalues. 

3 .  G A U S S I A N  R B F S  A S  P O L Y N O M I A L S  

For G R B F s  with equal ly spaced centers in [ -1 ,  1], i.e., x~ = - l + 2 k / N  = - l + k h ,  k = 0 , . . . ,  N ,  
we have tha t  (1) becomes 

N N 
) F(2g) ~- E /~ke--(x+l--kh)2/c2 = e (x+1)2/c2 ~ x ~ 2kh -k2h2  /c  2~2kxh/c  2. 

k=O k=O 

(11) 

Following [9], we make the definition ~ = 2 h / c  2 = 4 / ( N c  2) and use the  t rans format ion  

s = e ~ ,  s C [e - z ,  ez] , 

to find tha t  

N N 

k=0 k=O 
(12) 
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-1 Chebyshev nodes 1 

Figure 4. Node locations obtained using density function computed by solving an 
integral equation for N = 20 and several values of ft. 

whm'e tile ~k are independent of s. Throughout  this section we assume that /3  is a fixed parameter. 
Using the fact tha t  G/¢~ is a polynomial, in [9] we presented necessary conditions for uniform 

convergence of the GRBF interpolation process. Specifically, if we let p be the limiting node 
density function [14] of nodes on [-1,  1] and define 

1 

uz(z) = ~ [(z + 1) 2] - / _  log (le ~z - eZtl) #(t)dt, (13) 
4 1 

then the C R B F  interpolant converges exponentially to the target  function, provided that  this 
function has an analytic extension in the largest region of the complex plane tha t  includes all level 
curves of u~ that  cross the interval [-1,  1]. On the other hand, if the function being interpolated 
does not satisfy this requirement, approximations lead to spurious oscillations whose amplitude 
grows exponentially with N. This is analogous to the Runge phenomenon in polynomial inter- 
polation. 

In [9], we also showed that  one can find node distributions for which G R B F  interpolation 
converges whenever the target function is analytic on [-1,  1]. In Figure 3, we present plots of 
these density functions for several values of/3. Notice tha t  for large/5, the density functions are 
approximately constant except near the ends of the interval. For small /3, on the other hand, 
density functions are close to the Chebyshev density function. In Figure 4, we show 21 nodes 
generated with such density functions. For large/3 the nodes are nearly equally spaced and for 
small/3 they are similar to Chebyshev extreme points [15]. 
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As in polynomial interpolation, although convergence may be guaranteed for sufficiently smooth 
functions for a given set of interpolation nodes, approximations may not converge in the presence 
of rounding errors due to the rapid growth of the Lebesgue constant [16]. For GRBFs, we found 
that under most conditions these constants grow exponentially with N. If nodes are obtained with 
optimal density functions, however, the growth of these constants seems to be logarithmic [9]. 
In this article, we shall see that these optimal nodes also lead to stable approximations for 
time-dependent problems. 

3.1. G R B F  Dif ferent iat ion Matr ices  

Although the differentiation matrix for RBFs can be generated using the guidelines presented 
in Section 2, for GRBFs in 1-D with equally spaced nodes, we can derive an explicit formula for 
the entries of the differentiation matrix. This approach circumvents the difficulty of inverting the 
usually ill-conditioned interpolation matrix A. 

Using the fact the GRBFs with equally spaced centers are polynomials in a transformed vari- 
ables, we can find the entries of the differentiation matrix using the aid of Lagrange interpolation. 
In [17], Berrut and Trefethen argue that the barycentric form of the Lagrange interpolation should 
be the method of choice for polynomial interpolation. In order to differentiate GRBF interpolants, 
consider the barycentric formula for the GRBF interpolant presented in [9], 

N 
( ~ k / ( e  'x - e ' ~ ) )  f(zk) 

F(~)  = ~(~) ~=0 (14) 
N 

k=0 

where the Wk are the barycentric weights defined by 

~ = e-(~/~)(~÷~/~ ( ~  - ~ )  (1~) 
j=0 \jCk 

and 
N 

1 ~ e_(N~/4)(x_~)2" ~(~) = 

k=0 

From (14) the following expression for the GRBF cardinal function can be derived: 

L j ( x )  = N , x ¢ x j ,  L j ( x j )  = 1. (16) 

E ~ k ~ ( ~ ) / ( ~  - ~ )  
k=0 

We can rewrite (16) as 

Lj(x) - wjv(x) ~e ~ : - e  ~ ~ (17) 
~(x) \ ~ - e ~ ) '  

where s i (x )  N = ~ k = o W k V ( X k ) ( e  z~ -- eZ~') / (e  ~ e ~ k ) .  Multiplying both sides of (17) by s~ and 
differentiating the resulting equation gives 

( ) L1j(x)si(x)  ÷ L j ( x ) s~ (x )  = w j  m 

Since s i (x i )  = w~ and Lj(x~)  = 0 for j ¢ i, we have 

Zv(xi)ef~wJ (18) 
L~(~)  = (~9~ - e ~ )  ~.~" 
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= }-~k=0 Lk(x)v(xk). Differentiat ing v In order to derive an expression for Ltj (zj), notice tha t  v(x) g 
and solving the result ing equat ion for L} (x j) gives 

L•(xj)- v'(xj) Y v(xk) (19) 
v(xy) ~ nt(zJ) v(xj)" 

k=O 
kT~ j 

Therefore, the  entries of the first-order differentiation ma t r ix  a r e  D i ,  j - L'j(xi). This  for- 

mulat ion for / )  is bo th  far more robust  than  the one presented in the  previous sect ion and 

computa t iona l ly  more efficient. We point  out, however, t ha t  in some cases it is necessary to 
rescale (15) to avoid overflow [9]. 

In Figure 5, we present  the  error of the  approximat ion  of dI from values of f(x) = 1/(1 + 25x 2) 

at nodes in [ -1 ,  1]. We used fl = 2 and the nodes were genera ted  with approx imate  op t imal  
densi ty functions. We observe tha t  the use of both  s table nodes and the s table formulat ion for the 

differentiation mat r ix  permi ts  convergence to machine precision, while the  use of differentiat ion 

matr ices  ob ta ined  with the s t andard  algori thm presented in Section 2 gives very poor results  for 

large N.  We point  out t ha t  the need for s table nodes is due not  only to  the  Runge phenomenon,  
but  also to avoid the rapid  growth of the Lebesgue constants.  In the presence of rounding 
errors, if we were to approximate  sin(Tcx) ins tead of f in the approx imat ion  problem above using 
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equispaced nodes, spectral convergence would be lost for N > 40 for the standard algorithm and 
for N > 65 for the barycentric algorithm with an minimum error of about 10 -6, even though 
convergence would be guaranteed for this function by Theorem 2.2 in [9]. 

To illustrate how optimal nodes stabilize RBF approximations of time-dependent problems, 
in Figure 6 we show the behavior of the eigenvalues of the RBF differential matrix D with 
incorporated boundary conditions. The matrix D was derived with the baryeentric algorithm 
and fl = 2. Now all eigenvalues lie in left-half plane, so standard explicit time integration 
techniques can be used together with this spatial approximation. 

The spectral radius of D is shown in Figure 7 as a function of N for /3 = 0.1, 1, and 10. 
Notice that  for large N, the spectral radius grows as O(N2). We observe that  for ~ = 10, 
the growth was O(N)  for several values of N, but for large N the effects of the rapid growth 
of tile density function near the boundary (see Figure 3) forces clustering of the nodes. The 
spacing between nodes for large N near the ends of the interval is approximately 0(1 /N2) .  The 
restriction on time-step sizes for CRBFs on stable nodes is, therefore, similar to the one for 
polynomial approximation. 

The results in this section extend immediately to tensor-product regions of uniform center 
locations in higher dimensions. Although this type of region is usually of little interest to RBF 
users, they help us to illustrate the fact that the location of collocation nodes can be used to 
stabilize RBFs and improve accuracy. Figure 8 presents results for the convective test problem, 
ut - Ux+Uy, for (x, y) E [-1,  1] x [-1,  1] and t > 0, with initial condition u(0, x, y) - e x p ( - 2 0 ( ( x -  
0.2) 2 + (y - 0.2)2)) and boundary conditions u(t, 1, y) = u(t, x, 1) = 0. We used GRBFs with 
fl - 2, 27 nodes, and equally spaced centers. We can generate stable nodes in this square by 
taking the tensor product of stable nodes in [-1,  1] (Figure 8a). In Figure 8b we show rescaled 
eigenvalues of the RBF convection matrix when At = 0.04. Notice that  for stable nodes, they lie 
inside the fourth-order Runge-Kutta region of stability; for equispaced nodes, however, some lie 
outside. Figure 8d shows the computed solution with clustered nodes at t = 0.7 using fourth-order 
Runge-Kutta. 

Although asymptotically stable nodes for other radial functions, like multiquadries and inverse 
quadratics, are not known, Figure 9 indicates that  clustering of nodes may also be used to stabilize 
discretizations obtained with these functions. This figure presents the spectrum of D obtained 
with multiquadrics, shape parameter c = 1, equally spaced centers, N = 19, and three sets of 
interpolation nodes. Notice that for Chebyshev and equispaeed nodes the differentiation matrices 
present unstable eigenvalues, but for GRBF stable nodes for fl = 1, D has only eigenvalues with 
nonpositive real part. 
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Figu re  9. S p e c t r a  of d i f fe ren t ia t ion  ma t r i ce s  g e n e r a t e d  w i t h  m u l t i q u a d r i c s  and  th ree  
se ts  of i n t e r p o l a t i o n  nodes:  equa l ly  spaced  (o); C h e b y s h e v  (+ ) ;  and  G R B F  s t ab l e  
nodes  (*). 

3 . 2 .  G R B F s  a n d  M a p p e d  P o l y n o m i a l  M e t h o d s  

Since the early 1990s a t ten t ion  has been given to m a p p e d  polynomial  methods ,  such as the 
one in t roduced by Kosloff and Tal-Ezer [181. The in terpolant  for m a p p e d  polynomial  methods  
takes the form 

N 

F(x) = Z  kPk(Y), 
k=0  
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Figure 10. Density functions for several values of ~ for the  Kosloff-Tal-Ezer modified 
Chebyshev method.  

where Pk form a polynomial basis and y is some function of x. The mapping proposed in [18] is 

1 
y = ~ sin (x s in - l~ ) ,  0 < ~ < 1 .  

The stable interpolation nodes are thus given by Chebyshev nodes [15] in the variable y. The 
parameter ~ controls the degree to which the grid is stretched under the mapping. 

Different strategies to choose the parameter ~ have been proposed in the literature (see [19] 
and references therein). The goal is to allow near-spectral convergence in space with a time-step 
restriction of O(N-1).  To achieve this objective one has to take ~ close to 1 as N is increased; 
effectively one makes an explicit tradeoff between accuracy and stability. 

According to (12), GRBFs with equally spaced centers can be seen as a mapped polynomiai 
method. We believe that in most eases, given ~ one can find ~ so that both methods present 
similar convergence and stability properties. Figure 10 shows limiting node density functions for 
the Kosloff-Tal-Ezer method. Comparing this with Figure 3, we see similar clustering behavior 
of the density functions near +1. 

4.  L E A S T - S Q U A R E S  A P P R O X I M A T I O N S  

Although the previous section presents an stable algorithm for Gaussian RBFs, stable nodes 
for other radial functions, like multiquadrics, are yet not known. Moreover, the task of finding 
stable nodes becomes more complex perhaps impossible--in higher dimensions with compli- 
cated geometry. We propose using least-squares approximations to avoid this difficulty. In [20] 
Buhmann presents several benefits of using least-squares instead of interpolation. 

We seek least-squares approximations in a discrete norm. With this approach, given N + 1 
centers, we select M nodes at which to compute the residual of the approximations; quadrature 
nodes are one obvious choice. The goal is to minimize the norm of the residual 

N 

k = 0  

in the interior of the domain and enforce the boundary condition at boundary nodes. 
Boundary conditions can be enforced weakly or strongly. In the first approach, the coeffi- 

cients ,kk minimize the residual in the interior and boundary; i.e., boundary conditions may not 
be satisfied exactly at boundary nodes. In this case, a weighted norm may be used to penalize 
errors at boundary nodes more heavily than at interior nodes [21]. We found that this technique 
may require very large weights at the boundary to stabilize explicit RBF-based methods for time- 
dependent problems, which in turn usually worsens the condition number of the matrices used 
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in the approximations. We believe that  a more efficient way to use discrete least-squares is to 
enforce boundary  conditions strongly. 

In order to derive a least-squares differentiation matrix, assume a general region in 7~ d and 
Diriehlet boundary  conditions. Given MI  nodes in the interior of the domain, we can write the 
norm of the residual at these points in matrix form, 

R ( A )  = I IAz~  - u / l l .  (20)  

Here I[" [] is the discrete two-norm in T~ Mr and A1 is the RBF evaluation matr ix  at interior nodes. 
If in addition we have Mb nodes on the boundary, we require 

Ab)~ = Ub, (21) 

where Ab is the RBF evaluation matrix at boundary nodes and u - [uI, Ub] T is a vector containing 
the values of the target function at the least-squares nodes. 

To solve this constrained least-squares problem, we use the method of direct elimination. The 
method consists of reducing the number of unknowns in ,k in order to satisfy the constraint equa- 
tion (21), and solving the resulting unconstrained reduced system through a QR factorization. 
The details of the derivation that  follows can be found in [22]. 

We start  by computing the pivoted QR decomposition of Ab, 

AdIb  = Ob [Rbl Rb2 ], 

where Ilb is a permutation matrix, @, C "~Mb×M~, is orthogonal, and Rbl E T~ MbxMs is upper 
triangular and nonsingular. Moreover, let 

AIYG = [AI1 A.~2], 

where A n  E T4 MIxM~, and define -AI2 = AI2 -AxlR~llRb2. The solution of the constrained 

least-squares problem is then given by [22] 

,k = I I b  RA] [ Q ~ u i ]  ' 

where QARA is the reduced QR decomposition of ,412, and QA ~ 74 MI×(N+I-Mb) and 
RA E T4 (N+I-M~')x(N+I-Mb). 

If we now let B be defined as in Section 2, Ux = B,X, where here B can be rectangular, we 

have 

Notice t h a t / )  is now an M x M matrix. Boundary conditions can then be enforced by modifying 
the m a t r i x / )  to reflect desired values of ub. For our test problem given by (2) and (3), we can 
enforce (3) by simply removing the last column and row o f / ) ,  as in Section 2, to obtain the 
matrix D. We point out tha t  this method can also be used with other boundary  conditions, like 
Neumann boundary  conditions, by modifying the constraint equation accordingly and minimizing 

the residual at interior and boundary  nodes. 
Figure 11 presents the eigenvalues of the least-squares differentiation matr ix for multiquadrics. 

To generate this data  we used twice as many nodes as centers. All numerical results presented 
in this section were obtained with Chebyshev nodes (xj = cos(Trj/(2N)), j = 0, 1 , . . . ,  2N). 
This choice of nodes is not required for stability and in several numerical tests equally spaced 
nodes were successfully used. In Figure 11a, we used shape pm'ameter c = 1 and equally spaced 
centers. It can be observed in this figure that  if N is increased, most of the speetrmn moves 
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F igu re  11. E igenva lues  of D for m u l t i q u a d r i c  R B F s  w i t h  e q u a l l y  spaced  centers .  
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Figure 12. Error in the approximation of a,_~_, where f(z) = tanh(10x) - tanh(10), 
using multiquadric RBFs with equally spaced centers (*) and imperfectly adapted 
centers (-). 

further to the left of the imaginary axis. In Figure l l b  we fixed N = 13 and varied c. All 

eigenvalues presented in this plot allow stable explicit time integration. For instance, one could 

use fourth-order Runge-Kut ta  in time with At  = 0.13 if N = 13 and c = 1. 

Two of the most impor tant  features of RBFs are their flexibility in the shape parameter  and 

center locations, compared to a s tandard polynomial basis. The centers'  locations can be exploited 

to increase resolution in specific regions. For instance, the function f(z) = tanh(10z)  - tanh(10) 

varies sharply near z = 0 and is almost constant  in other parts of the interval [ -1 ,  1]. Therefore, 

clustering centers more densely in the middle of the interval, one would expect to get bet ter  

accuracy. This is indeed the case, as shown in Figure 12. In this plot we compare derivative 

approximations with equally spaced centers and adapted centers given by z~ = (2/~r) sin -1 ( - 1  + 

2j/N). As expected, the error decays faster if adapted centers are used. No unstable  eigenvalue 

was observed for all data  presented. 

The s tandard  representations of smooth RBFs subspaees are in most circumstances ill-condi- 

tioned. This would make cont inuat ion of Figure 12 to, say, 10 - l °  vir tual ly  impossible in double 

precision. For GRBFs with equally spaced centers, however, well-conditioned representations 

can be computed. In Appendix A we present an algorithm based on an Arnoldi-like i teration to 

generate orthogonal basis for GRBFs  with equally spaced centers. This  approach also relies on a 

close connection between GRBFs and polynomials. In Figure 13 the error of the approximations 

of the derivative of f(z) = sin(rrz) using GRBFs with fl = 2 is presented. The least-squares 
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Figure 13. Error in the approximation d~x, where f(x) = sin(zrx), using an orthogo- 
nal basis generated with an Arnoldi iteration (.) and the standard Gaussian radial 
basis (*). 
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Figure 14. Eigenvalues of the least-square GRBF differentiation matrix for fl -- 2: 
N = 30 (.); N = 50 (o); and N = 70 (*). 

differentiation matr ix  was used for these approximations. Notice tha t  the Arnoldi i teration 

permits approximations close to machine precision, while convergence for the s tandard G R B F  

basis stops with error of O(10-6).  

Figure 14 shows the eigenvalues of the least-square GRBF differentiation matr ix  for/3 = 2 and 

N = 30, 50, and 70. The Arnoldi i teration was used to compute an orthogonal basis. 

In Figure 15, we consider the numerical solution of the t ranspor t  equation with initial condition 

u0(x) = e x p ( - ( 5 z -  3.5)1°). In Figure 15a the exact solution is presented for t = 1 together with 

two numerical solutions obtained with GRBFs and 20 centers. Basis functions were computed 

with the Arnoldi i teration wi th /3  = 1. It can be observed tha t  the least-squares method gives 

slightly bet ter  results. For the least-squares approximations we used twice as many Chebyshev 

nodes as centers. Figure 15b shows the maximum error, max lUexact (t, x ) -  Uapprox(t , X)[, (t, X) E 

[0, 1] X [--1, 1], for several values of N. In this instance the least-squares method and the collocation 

method on GRBF nodes presented similar rates of convergence and errors. Fourth-order Runge- 

Ku t t a  was uscd for t ime-integrat ion with time-step At = 10 -3. 

To illustrate the least-squares scheme on 2-D regions, we solve the wave equation utt : U x x d - t t y y  

with zero Dirichlet boundary  conditions in a peanut-like region defined by parametric equations 

x - v/cos 2 0 + 4 s i n  20cos0,  y - v/cos 2 0 + 4 s i n  20s in0 ,  0 _< 0 < 27r. Figure 16 presents the 
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Figure 16. Eigenvalues of the Laplacian operator on the peanut region discretized 
with multiquadrics. 

eigeuvalues of the Laplacian operator discretized with multiquadrics,  shape parameter  c = 1, 

and 200 uniformly spaced centers. Notice tha t  if the collocation method is used with nodes that  

coincide with centers, we obtain a matr ix  that  has complex eigenvalues (Figure 16a). Using the 

least-squares method with 432 uniformly spaced nodes, on the other hand,  one obtains a matrix 

with almost purely real spectrum, as expected for the Laplacian, and smaller spectral radius. 

Figure 17 presents the numerical solution of the wave equation with initial  conditions u(0, 
x, y) = exp(--30(x 2 -- (y -- i)2)) + exp(--50(x 4 + (y + I)4)), and ut(O, x, y) --- 0. The least-squares 

method was used together with a leapfrog discretization in time with time step At ---- 0.01. 

Notice that this time-discretization scheme for the second-order derivative requires a purely real 

spectrum for stability. A fine grid was used to plot the solution at t - 0, 0.33, 0.66, i. 

5. F I N A L  R E M A R K S  

Eigenvalue stabili ty is a crucial factor in the usefulness of RBF discretizations for time- 

dependent  problems. In Section 2, we proved that  under mild conditions, RBF methods are 

eigenvalue stable in the absence of boundaries,  including methods on periodic domains. How- 

ever, in the presence of boundaries,  RBF collocation is quite likely to be unstable.  

In Section 3, we showed that  Gaussian RBF collocation is stable when special node distr ibutions 

are used in one dimension. As far as we know, this is the first conclusive demonstra t ion that  node 

locations can eliminate instabil i ty asymptotically. While in principle this result should extend to 
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N u m e r i c a l  s o l u t i o n  o f  a v i b r a t i n g  p e a n u t - l i k e  m e m b r a n e  u s i n g  m u l t i -  

tensor product  regions, there is probably little practical interest in implementing RBF methods 
in such cases, since polynomials are also available. 

For problems in complicated geometries, finding universally stable nodes for RBF collocation 
seems daunting. In Section 4, we proposed using least-squares approximations as the foundation 
of a differentiation matrix. This offers the possibility of separating the requirements of accuracy 
(governed mostly by the RBF centers) and stability (mandating clustering near boundaries). 
The added flexibility can be used to adapt centers to data,  or to use an Arnoldi-like iteration 
for equispaced centers to circumvent RBF conditioning issues. Differentiation matrices based on 
the least-squares idea can incorporate boundary  conditions strongly and remain as convenient as 
collocation methods for variable coefficients and nonlinearity. We have demonstrated that  they 
remain eigenvalue stable for widely different discretization parameters. A systematic exploration 
of their accuracy and stability will be undertaken in future work. 

A P P E N D I X  A 

A N  A R N O L D I - L I K E  I T E R A T I O N  

F O R  G R B F  A P P R O X I M A T I O N S  

The Arnoldi iteration has been widely used to construct or thonormal  bases of the Krylov 
subspaces, Span(b, Ab, A2b,..., Anb), where A is a given matrix and b is a vector. In general, 
the basis {b, Ab, A2b,..., A%} is computationally unstable, however, the Arnoldi iteration allows 
stable computations. Notice tha t  a new member of the GRBF basis can be constructed from an 
old one through pointwise multiplication by a function of x. This is the start ing point for our 
Arnoldi-like iteration. The Arnoldi algorithm to produce an orthogonal GRBF basis on [-1,  1], 
{q0, q l , . . . ,  qN}, is depicted below. 
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qo(x) = e x p ( - N / 3 ( x  + 1)2/4) 
q~(x) = ( - N / 3 ( x  + 1) /2)qo(x)  
qo(:c') = qo(x)/llqoll 
q~(x) = q~o(X)/llqoll 
For  k - l : N  

V(gC) = qk-  l (X) exp(/3x)  

V'(X) = q ~ _ l ( X ) e x p ( / 3 x )  -4-/3qk-1 (x) exp(/3x)  
For  j = l : k - 1  

v (x )  = v (x )  - <qj, v )q j ( x )  
v' (x) = v' (x) - (qj, v)qj (x) 

end 

qk(x)  -- v(x)/l lvll  
q~(~) = v'(~)/l l~ll  

end. 

In our implementa t ion ,  the inner product  (., .} is the usual discrete L2 inner product .  The in- 
nermost  loop is the modified Gram-Schmid t  or thogonal izat ion.  In some cases reor thogonal izat ion 
may be needed due to rounding errors. In this a lgor i thm we also included the steps to generate 
the derivatives q} of qj. 

If roundoff errors are not present,  this  a lgor i thm reduces to  a Lanczos-like i terat ion.  For the  
or thogonal  basis {q0 . . . .  , qN}  generated with the  a lgor i thm descr ibed above, there  exist con- 
s tants  ak and bk such tha t  

sqk = a k - i q k - 1  + bkqk + akqk+l, 

where s = e ~ .  Fur thermore ,  if/3 << 1 then ak = O(fl) and bk = 1 + 0(/3).  
The three te rm formula can be easily verified since sqj E S p a n { q 0 , . . . ,  qj+l  }, which implies tha t  

(sqk, qj) = (qk, sqj) = 0 if j + 1 < k. Hence, sqk = ckqk-1 + bkqk + akqk+~ for some constants  Ck, 
bk, and ak. And ek = (sqk,qk-1} = (qk ,sqk-1)  = (qk,ek--l@--2 A- bk - tqk -1  + ak--xqk) gives 
C k = ak_ 1. 

The bounds  for bk can be obta ined  from 

M 

bk = (sqk, qk} = E ezxj q~(xj )  dx,  
j - o  

which gives e - ~  _< b k < e ~ and bk = 1 + 0(/3) for /3 << 1. Similarly, we can show tha t  e - z  < 
Ilsqkll <_ e ~. Now using tha t  this  basis is or thonormal ,  we have lak_ll  2 + l a k l  e = Ibkl 2 - ] l s q k l f ,  
and it follows tha t  ak = O(/f), for small /3.  

We point  out  t ha t  for e > 0.7, a simple modificat ion of (12) gives a well-condit ioned G R B F  
approximat ion,  

N 
F ( x )  = e -(x+U2/C2 E AkTk " { ezx - cosh(/3))  \ 

\ sinh(/3) 
k=0 - (23 )  

N 
= e-(ZN/4)(x+l)2 Z -~kTk ( e ~  - cosh( /3))  

\ ' 
k=0 

where Tk is the  k TM Chebyshev polynomial .  For smaller values of the  shape parameter ,  however, 
the exponent ia l  te rm in front of the sum becomes very close to zero for some values of x, to the  
extent  t ha t  accuracy is compromised.  This is usually the  case when the  pa rame te r  /3 is fixed. 
Note tha t  in the l imit  e --~ oc, (23) becomes a stun of polynomials ,  in agreement  wi th  [11,23]. 
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