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Driscoll and Heryudono [1] developed an adaptive method for
radial basis functions method. This article addresses the adaptive
analysis of composite plates in bending with radial basis multi-
quadric functions using Driscoll and Heryudono’s technique. In
this article, various laminates, thickness to side length ratios, and
boundary conditions are considered. The method allows for a more
natural and automatic selection of the problem grid, where the user
must only define the error tolerance. The results obtained show an
interesting and promising approach to the static analysis of com-
posite laminates.

Keywords radial basis functions, adaptive methods, composite,
plates, residual, subsampling, multiquadric

1. INTRODUCTION
Radial basis function (RBF) methods are a good alterna-

tive method for the numerical solution of partial differential
equations (PDEs) [2–6]. Compared to low-order methods, such
as finite differences, finite volumes, and finite elements, RBF-
based methods offer numerous advantages, such as mesh-free
discretization and simple implementation. The imposition of the
essential and natural boundary conditions is straightforward.

Also, depending on how the RBFs are chosen, high-order or
spectral convergence can be achieved [7].

For the application of fixed-grid RBF methods to laminated
composite beams and plates, readers should consult [8–10].

Adaptive methods may be preferred over fixed grid methods
in problems that exhibit high degrees of localizations such as
steep gradients or corners. The goal is to obtain a numerical
solution such that the error is below a prescribed accuracy with
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Portugal. E-mail: ferreira@fe.up.pt

the smallest number of degrees of freedom. Since RBF meth-
ods are completely meshfree, requiring only interpolation nodes
and a set of points called centers defining the basis functions,
implementing adaptivity in terms of refining and coarsening
nodes is straightforward. Driscoll and Heryudono [1] developed
an adaptive algorithm for RBFs where results obtained on in-
terpolation, boundary-value, and time-dependent problems are
encouraging.

In the present work, we apply the residual subsampling tech-
nique developed by Driscoll and Heryudono to the static analysis
of isotropic and symmetric laminated composite plates.

We considered the First Order-Shear Deformation Theory
(FSDT) [11].

The method starts with nonoverlapping boxes, each contain-
ing an active center. Once an interpolant has been computed for
the active center set, the residual of the resulting approximation
is sampled on a finer node set in each box. Nodes from the finer
set are added to or removed from the set of centers based on the
size of the residual of the PDE at those points. The interpolant
is then recomputed using the new active center set for a new
approximation.

We organize the article as follows. In Section 2 we review the
governing differential equations for the bending of laminated
plates using the FSDT. The RBF implementation is shortly
reviewed in Section 3. In Section 4 we explain in detail the
application of the residual subsampling technique to plates. Nu-
merical results for isotropic and composite square plates are pre-
sented in subsections 5.1 and 5.2, respectively, and discussed in
subsections 5.3. Finally some conclusions are presented in
Section 6.

2. ANALYSIS OF SYMMETRIC LAMINATED PLATES
Several laminate theories, such as the classical laminate

theory, the first-order shear deformation theory, and the
higher-order shear deformation theory, have been proposed in
the literature (see [11] for a review).
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 421

In the present study, the First-Order Shear Deformation The-
ory (FSDT) was used. This theory is based on the assumed
displacement field

u = u0 + zθx

v = v0 + zθy (1)

w = w0

where u and v are the in-plane displacements at any point
(x, y, z) and (u0, v0, w0) are the displacement components along
the (x, y, z) coordinate directions, respectively, of a point on the
midplane, usually considered at z = 0.

The transverse displacement w(x, y) and the rotations
θx (x, y) and θy(x, y) about the y- and x- axes are independently
interpolated due to uncoupling between inplane displacements
and bending displacements for symmetrically laminated plates.
The equations of motion for the bending of laminated plates
[11,12] are obtained as:

D11
∂2θx

∂x2
+ D16

∂2θy

∂x2
+ (D12 + D66)

∂2θy

∂x∂y
+ 2D16

∂2θx

∂x∂y

+ D66
∂2θx

∂y2
+ D26

∂2θy

∂y2
+ −k A45

(
θy + ∂w

∂y

)

− k A55

(
θx + ∂w

∂x

)
= 0 (2)

D16
∂2θx

∂x2
+ D66

∂2θy

∂x2
+ (D12 + D66)

∂2θx

∂x∂y
+ 2D26

∂2θy

∂x∂y

+ D26
∂2θx

∂y2
+ D22

∂2θy

∂y2
+ −k A44

(
θy + ∂w

∂y

)

− k A45

(
θx + ∂w

∂x

)
= 0 (3)

∂

∂x

[
k A45

(
θy + ∂w

∂y

)
+ k A55

(
θx + ∂w

∂x

)]

+ ∂

∂y

[
k A44

(
θy + ∂w

∂y

)
+k A45

(
θx + ∂w

∂x

)]
= q, (4)

where q is the applied load, Dij and Aij are the bending and
shear stiffness components, and k is the shear correction factor.
Here h denotes the total thickness of the composite plate.

The bending moments Mx , My , and Mxy and the shear forces
Qx and Qy are expressed as functions of the displacement gra-
dients and the material stiffness components as

Mx = D11
∂θx

∂x
+ D12

∂θy

∂y
+ D16

(
∂θx

∂y
+ ∂θy

∂x

)
(5)

My = D12
∂θx

∂x
+ D22

∂θy

∂y
+ D26

(
∂θx

∂y
+ ∂θy

∂x

)
(6)

Mxy = D16
∂θx

∂x
+ D26

∂θy

∂y
+ D66

(
∂θx

∂y
+ ∂θy

∂x

)
(7)

Qx = k A55

(
θx + ∂w

∂x

)
+ k A45

(
θy + ∂w

∂y

)
(8)

Qy = k A45

(
θx + ∂w

∂x

)
+ k A55

(
θy + ∂w

∂y

)
. (9)

The boundary conditions for an arbitrary edge with sim-
ply supported, clamped, or free-edge conditions are defined as
follows:

1. Simply supported:
• SS1: w = 0; Mn = 0; Mns = 0.
• SS2: w = 0; Mn = 0; θs = 0.

2. Clamped: w = 0; θn = 0; θs = 0.
3. Free: Qn = 0; Mn = 0; Mns = 0.

In previous equations, the subscripts n and s refer to the nor-
mal and tangential directions of the edge, respectively; Mn, Mns,

and Qn represent the normal bending moment, twisting moment
and shear force on the plate edge; θn and θs represent the ro-
tations about the tangential and normal coordinates at the plate
edge. The stress resultants on an edge whose normal is repre-
sented by n = (nx , ny) can be expressed as

Mn = n2
x Mx + 2nx ny Mxy + n2

y My (10)

Mns = (
n2

x − n2
y

)
Mxy − nx ny(My − Mx ) (11)

Qn = nx Qx + ny Qy (12)

θn = nxθx + nyθy (13)

θs = nxθy − nyθx , (14)

where nx and ny are the direction cosines of a unit normal vector
at a point at the laminated plate boundary [11,12].

Note that we can analyze Mindlin isotropic plates by consid-
ering D11 = D22 = D = Eh3

12(1−ν2) , D12 = νD11, D66 = Gh3

12 ,
A55 = A44 = kGh and D16 = D26 = A45 = 0, where E is
the modulus of elasticity and ν is Poisson’s ratio of the isotropic
material.

For further details about the FSDT, readers should consult
[11].

3. THE COLLOCATION TECHNIQUE
The meshless radial basis functions method was first used

by Hardy [13, 14] in the interpolation of geographical data.
Later, Kansa used it for the solution of PDE [2, 3]. Nowadays
this technique is well known for solving systems of PDEs with
excellent accuracy [2–6].

Both Hardy and Kansa used the multiquadric radial basis
function

g(r, c) =
√

(r2 + c2); (15)
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422 A.M.A. NEVES ET AL.

but many other radial basis functions can be used as interpolation
functions [15], such as the

g(r, c) = 1/
√

(r2 + c2); inverse multiquadric

g(r, c) = e−cr2
; c > 0 gaussian

g(r ) = r2 log r ; thin plate spline

Radial basis functions depend on a distance r between points
in a grid and may depend on a shape parameter c. Typically, r
represents the Euclidean distance, but it is not necessary to be
this one.

More details about the RBF meshfree method can be found
in [15].

In this article, we use the multiquadric radial basis function.
It depends on the Euclidean distance r and on a shape parameter
c that influences the function surface shape.

3.1. Collocation with Radial Basis Functions
Consider the generic boundary value problem with a domain

� and boundary ∂�, and linear differential operators L and B:

Lu(x) = f (x), x ∈ � ⊂ R
n; Bu|∂� = q. (16)

The function u(x) is approximated considering N interpolation
points:

u � ū =
N∑

j=1

α j g j , (17)

where α j are parameters to be determined. We consider a global
collocation method where the linear operators L and B acting at
the domain �\∂� and at the boundary ∂� define a set of global
equations in the form

(
Li i Lib

Bbi Bbb

) (
αi

αb

)
=

(
fi

qb

)
or

[L] [
α
] = [

λ
]
, (18)

where i and b denote the domain (interior) and boundary nodes,
respectively; fi and qb are external conditions at the domain
and at the boundary. The collocation technique produces an
unsymmetric (full) coefficient matrix.

The function g represents a radial basis function. In our
formulation we consider the multiquadric function in the form

g(r, ε) =
√

1 + (εr )2. (19)

It depends on the Euclidean distance r and on a shape param-
eter ε that works as a fine tuning for better performance. This
formulation is equivalent to the one in (15) if we set ε = 1/c.

We are using different shape function ε for all nodes, so that:

gi (r, ε) = (1 + (‖x − x j‖εi )
2)

1
2 . (20)

Applying the collocation method with N centers (bound-
ary and interior included) and g j defined in (20), the govern-
ing differential equations (2) to (4) are interpolated for each
node as

N∑
j=1

α
θx
j D11

∂2g j

∂x2
+

N∑
j=1

α
θy

j D16
∂2g j

∂x2
+

N∑
j=1

α
θy

j (D12+D16)
∂2g j

∂x∂y

+ 2
N∑

j=1

α
θx
j D16

∂2g j

∂x∂y
+

N∑
j=1

α
θx
j D66

∂2g j

∂y2
+

N∑
j=1

α
θy

j D26
∂2g j

∂y2

− k
N∑

j=1

α
θy

j A45g j − k
N∑

j=1

αw
j A45

∂g j

∂y
− k

N∑
j=1

α
θx
j A55g j

− k
N∑

j=1

αw
j A55

∂g j

∂x
= 0 (21)

N∑
j=1

α
θx
j D16

∂2g j

∂x2
+

N∑
j=1

α
θy

j D66
∂2g j

∂x2
+

N∑
j=1

α
θx
j (D12+D66)

∂2g j

∂x∂y

+ 2
N∑

j=1

α
θy

j D26
∂2g j

∂x∂y
+

N∑
j=1

α
θx
j D26

∂2g j

∂y2
+

N∑
j=1

α
θy

j D22
∂2g j

∂y2

− k
N∑

j=1

α
θy

j A44g j − k
N∑

j=1

αw
j A44

∂g j

∂y
− k

N∑
j=1

α
θx
j A45g j

− k
N∑

j=1

αw
j A45

∂g j

∂x
= 0 (22)

k
N∑

j=1

α
θy

j A45
∂g j

∂x
+ k

N∑
j=1

αw
j A45

∂2g j

∂x∂y
+ k

N∑
j=1

α
θx
j A55

∂g j

∂x

+k
N∑

j=1

αw
j A55

∂2g j

∂x2
+k

N∑
j=1

α
θy

j A44
∂g j

∂y
+k

N∑
j=1

αw
j A44

∂2g j

∂y2

+ k
N∑

j=1

α
θx
j A45

∂g j

∂y
+ k

N∑
j=1

αw
j A45

∂2g j

∂x∂y
= q. (23)

The vector of 3N unknowns α j is composed by the αi param-

eters for w0, θx , and θy , denoted as αw
j , αθx

j , and α
θy

j , respectively.
Both simply supported and clamped nodes include the bound-

ary condition wi = 0, interpolated as

N∑
j=1

αw
j gi = 0. (24)

Depending on the boundary condition, different equations
have to be added to this one, by modifying the corresponding
i th row:
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 423

1. For a clamped edge, we also impose θx = 0 and θy = 0 at
all boundary nodes i by the following interpolation

N∑
j=1

α
θx
j gi = 0 (25)

N∑
j=1

α
θy

j gi = 0. (26)

2. Simply supported edge

(a) For each node i of a simply supported edge x = a,
we must add Mx = 0 and θy = 0,

D11

N∑
j=1

α
θx
j

∂gi

∂x
+ D12

N∑
j=1

α
θy

j

∂gi

∂y

+ D16

⎛
⎝ N∑

j=1

α
θx
j

∂gi

∂y
+

N∑
j=1

α
θy

j

∂gi

∂x

⎞
⎠ = 0

(27)
N∑

j=1

α
θy

j gi = 0 (28)

(b) Similarly, for each node i of a simply supported
edge y = a, we will impose My = 0 and θx = 0,

D12

N∑
j=1

α
θx
j

∂gi

∂x
+ D22

N∑
j=1

α
θy

j

∂gi

∂y

+ D26

⎛
⎝ N∑

j=1

α
θx
j

∂gi

∂y
+

N∑
j=1

α
θy

j

∂gi

∂x

⎞
⎠ = 0

(29)
N∑

j=1

α
θx
j gi = 0. (30)

4. THE RESIDUAL SUBSAMPLING TECHNIQUE
APPLIED TO PLATES

The application of the residual subsampling technique [1] to
plates can be summarized as follows.

The user prescribes first both the lower and the higher residual
thresholds and the number of initial non-overlapping boxes in
the domain �. When applied to 2D, the boxes are quadrilaterals
and each box contains one RBF center and four residual points,
in which the residual is evaluated. The residual points do not
contribute to the RBF solution, only the RBF centers do.

Figure 1 represents four initial boxes with its centers and
residual points.

RBF center

Residual point

FIG. 1. Initial set of boxes, RBF centers, and residual points.

With the current set of RBF centers, we evaluate the PDE
solution, as

Lα = f, (31)

where L , f correspond to Eqs. (16)–(18).
Parameters α are then used to obtain the solution

Aα = u, (32)

where A is the RBF interpolation matrix and u the current
solution at the RBF centers (displacements w and rotations
θx , θy).

At each residual point the residual is obtained by

Lu − f = r. (33)

If, in each box, any residual value is larger than the higher
prescribed residual tolerance, we then proceed to the next iter-
ation with a refined set of boxes. At any box it is possible to
have up to 4 new boxes. The case where we have 3 new ones is
illustrated in Figure 2.

For every new box the value of the shape parameter εi (see Eq.
(19)) is set double of that of its parents. Furthermore, whenever
a box generates a new box the value of ε of the existing box is
also doubled. We are somehow trying to keep the shape of the
basis function constant on all scales as defined by local node
spacing, since we double the shape parameter when centers
become twice together.

In those boxes, wherein all residual points, the residual r
is lower than the lower prescribed tolerance, RBF centers are

RBF center

Residual point

FIG. 2. Refined set of boxes, RBF centers, and residual points.
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424 A.M.A. NEVES ET AL.

removed. In Figure 3 is illustrated the case of the four residual
points associated to the RBF center located at the left and bottom
having all residual smaller than the lower threshold imposed at
the beginning.

If in each box all residuals meet the expected tolerance, we
then remove that RBF center and proceed with a coarser grid.

For the new RBF center grid we iterate again by

• setting up a new shape parameter for each box;
• evaluating the solution Lα = f and Aα = u; and
• controling residuals at the new residual points in each

box Lu − f = r and proceed as before.

5. NUMERICAL EXPERIMENTS FOR PLATES IN
BENDING

We consider both isotropic and composite square plates in
bending with length a and thickness h. The thickness to length
ratios considered are a/h = 10 and a/h = 100.

The boundary conditions are either all edges simply-
supported (SSSS) or all edges clamped (CCCC).

We consider a fixed boundary with 49 equally spaced points
per side.

In the domain, we start with N = 4 (corresponding to 42 =
16 boxes) or N = 5 (corresponding to 52 = 25 boxes), being
these quite coarse grids.

In Figure 4 the initial centers and residual points considered
are presented for N = 4 and N = 5. When the chosen N is
even, we introduce the plate central point as a center, without
considering any checkbox or residual ckeckpoint. This was done
to make possible the comparison with the exact solution as we
always compare results by this adaptive method with analytical
solutions obtained by series solutions. Errors are expressed in %.

The initial shape parameter is ε = 2/N for each center box,
corresponding to ε = 2/4 or ε = 2/5. The chosen higher resid-
ual tolerance is 5∗10−4 and the lower one is 5∗10−7.

When applying the RBF collocation technique, the same set
of points is usually used for centers and interpolation (collo-
cation). In the present study that was done at the step of the
algorithm where we obtain α by solving Eq. (31). However, at
the step of the algorithm where the residual is evaluated by Eq.
(33), the boxes centers were the collocation points and the resid-
ual points were the boxes centers and so matrix L in (33) has

TABLE 1
Isotropic square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.077958e + 000 64
273 4.654796e − 001 63
336 7.690783e − 001 9
345 7.477775e − 001 2
347 7.407987e − 001 2
349 7.634622e − 001 0

TABLE 2
Isotropic square plate SSSS, a/h = 10, 25 initial boxes.

Centers Eerror (%) Adds

217 3.545147e + 000 100
317 7.549590e − 001 5
322 7.601606e − 001 0

dimension 3N ∗ 3M , being N the total number of centers (cen-
ter boxes and boundary points) and M the number of residual
points.

The process stops when there are no more points to be added.

5.1. Isotropic Plates
In this subsection, we consider an isotropic plate with modu-

lus of elasticity E = 10, 920 and Poisson’s coefficient ν = 0.25.
The non-dimensional transverse displacement is given by

w = 102 E2h3

a4
w (34)

for every solution.
In the following tables, we present the number of centers,

the relative error in percentage, and the number of centers to be
added at each iteration for the different isotropic plates analyzed.
In all performed tests, there are no points to be removed.

In Tables 1 and 2 we present the evolution of the method for
the isotropic square plate in bending, with thickness to length ra-
tio a/h = 10, and simply-supported (SSSS) boundary condition.
In Table 1 we show results with 16 initial boxes and in Table
2 we show results with 25 initial boxes. The analytical solution
obtained by Lévy series solutions for this case is 4.7543.

In Figure 3 the centers and the boxes at the third iteration are
presented for the isotropic square plate in bending, with thick-
ness to length ratio a/h = 10, simply-supported, and starting
with 16 boxes. In Figure 6 we present the final centers and the
deformed shape for the same case.

The final RBF centers and deformed shape of the isotropic
square plate in bending, with thickness to length ratio a/h = 10,
simply supported, starting with 25 boxes are shown in Figure 7.

In Table 3 is possible to see the evolution of the itera-
tive method when applied to the isotropic simply supported

RBF center

Residual point

FIG. 3. Coarse set of RBF centers.
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 425

FIG. 4. Initial boxes for N = 4 (on the left) and N = 5 (on the right).

square plate, with thickness to length ratio a/h = 100, in
bending, starting with 16 boxes. Results for the same plate
but using 25 initial boxes are shown in Table 4. The analyti-
cal solution obtained by Lévy series solutions for this case is
4.5720.

The final set of RBF centers of the isotropic simply supported
square plate in bending, with thickness to length ratio a/h = 100
are shown in Figure 8. On the left the case of 16 initial boxes
is illustrated, and on the right the case of 25 initial boxes is
illustrated.

FIG. 5. Distribution of centers (left) and boxes (right) at third iteration, isotropic square plate, SSSS, a/h = 10, 16 initial boxes.
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426 A.M.A. NEVES ET AL.

FIG. 6. Final centers and deformed shape of isotropic square plate, SSSS, a/h = 10, 16 initial boxes.

TABLE 3
Isotropic square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

209 9.999748e + 001 64
273 3.417590e + 000 168
441 5.100564e − 001 175
616 1.198528e − 002 25
641 5.794928e − 002 0

TABLE 4
Isotropic square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

217 1.728831e + 001 100
317 1.162787e + 000 141
458 7.501994e − 002 16
474 2.619898e − 002 19
493 5.042478e − 002 6
499 1.589558e − 002 2
501 5.990400e − 002 5
506 3.266486e − 002 2
508 3.155965e − 002 8
516 2.367293e − 002 1
517 1.635045e − 002 1
518 2.050627e − 002 0

5.2. Composite Plates
The examples considered here are limited to symmetric

cross-ply laminates with layers of equal thickness and with
identical material properties. The composite plates laminates
are [0/90/0] (having 3 layers, each one with thickness h/3), and
[0/90/90/0] (denoted as [0/90]s and having 4 layers, each one
with thickness h/4).

The material properties are

E1 = 25E2; G23 = 0.2E2; G12 = G13 = 0.5E2;

ν12 = 0.25; ν21 = ν12
E2

E1

As in the isotropic case, the tables below illustrate the evolu-
tion of the entire process of the iterative technique applied to the
bending analysis of plates with respect to the number of RBF
centers, the percentual relative error, and the number of centers
to be added at each iteration. Once again, there are no points to
be removed in all studied cases.

We use the same non-dimensional factor as in Eq. (34).
Tables 5 (16 initial boxes) and 6 (25 initial boxes) refer to

the case of the composite [0/90/0] square plate in bending, with
thickness to length ratio a/h = 10, and simply-supported (SSSS)
boundary condition. The error is obtained by comparing with
Mindlin solution [16], w̄ = 1.0211.

The set of RBF centers at the end of the iterative process
of the [0/90/0] simply-supported square plate in bending, with
thickness to length ratio a/h = 10 are presented in Figure 7.
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 427

FIG. 7. Final centers and deformed shape of isotropic square plate, SSSS, a/h = 10, 25 initial boxes.

TABLE 5
[0/90/0] square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.654938e + 000 64
273 5.681379e − 002 33
306 2.037581e − 001 70
376 3.746343e − 001 78
454 1.127763e − 001 23
477 1.680405e − 001 4
481 3.267953e − 001 3
484 9.192459e − 002 4
488 5.203128e − 002 2
490 1.329159e − 001 0

TABLE 6
[0/90/0] square plate SSSS, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

217 2.534830e+000 98
315 1.683086e − 001 31
346 1.696108e − 001 21
367 1.790651e − 001 1
368 1.612302e − 001 0

On the left we show the case of 16 initial boxes and on the right
the case of 25 initial boxes.

Table 7 illustrates the iterative process results for laminated
[0/90/0] simply supported square plate in bending, with a/h
= 100 and 16 initial boxes. Table 8 presents results for the
same problem, but with 25 initial boxes. Error is obtained
by comparing the solution with the Mindlin solution [16],
w̄ = 0.6701.

Table 9 illustrates the iterative process results for laminated
[0/90/0] clamped square plate in bending, with a/h = 10 and 16
initial boxes. Table 10 presents results for the same problem,
but with 25 initial boxes. Error is obtained by comparing the
solution with the Mindlin solution [16], w̄ = 0.4829.

Table 11 illustrates the iterative process results for laminated
[0/90]s simply supported square plate in bending, with a/h =
10 and 16 initial boxes. Table 12 presents results for the same

TABLE 7
[0/90/0] square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

209 3.619099e + 000 64
273 7.461579e − 001 170
443 1.243793e + 000 125
568 1.816361e − 001 50
618 5.638896e − 002 15
633 1.571762e − 001 4
637 1.110252e − 001 0
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428 A.M.A. NEVES ET AL.

TABLE 8
[0/90/0] square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

217 9.756506e + 000 100
317 2.809135e − 001 71
388 1.355320e − 001 27
415 2.087332e − 001 20
435 2.012888e − 001 19
454 1.142907e − 001 11
465 1.947379e − 001 28
493 2.773958e − 001 16
509 1.792259e − 001 5
514 2.683916e − 001 6
520 2.199761e − 001 0

problem, but with 25 initial boxes. Error is obtained by com-
paring the solution with the Navier solution [11], w̄ = 1.0250.

Table 13 illustrates the iterative process results for laminated
[0/90]s simply supported square plate in bending, with a/h =
100 and 16 initial boxes. Table 14 presents results for the same
problem, but with 25 initial boxes. Error is obtained by compar-
ing the solution with the Navier solution [11], w̄ = 0.6833.

5.3. Discussion of Results
On the numerical examples presented, the number of itera-

tions varies from 3 to 13. In every case the error is inferior to
1% after a few iterations. This is a very satisfactory result.

TABLE 9
[0/90/0] square plate CCCC, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

209 1.882287e + 000 60
269 4.101527e − 001 60
329 3.416589e − 002 41
370 2.623125e − 001 86
456 4.951293e − 001 28
484 6.473929e − 002 8
492 1.792660e − 002 24
516 1.677414e − 002 11
527 2.957150e − 002 2
529 4.054957e − 003 2
531 1.841740e − 002 2
533 1.273115e − 002 4
537 8.016174e − 003 0

TABLE 10
[0/90/0] square plate CCCC, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

217 1.810916e − 001 100
317 7.859572e − 003 31
348 2.139349e − 002 28
376 6.628577e − 003 2
378 2.498585e − 002 10
388 1.358878e − 002 0

FIG. 8. Final centers of the isotropic square plate, SSSS, a/h = 100, 16 (left) and 25 (right) initial boxes.
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ADAPTIVE METHODS FOR ANALYSIS OF COMPOSITE PLATES 429

TABLE 11
[0/90]s square plate SSSS, a/h = 10, 16 initial boxes.

Centers Error (%) Adds

401 1.556392e + 000 64
465 2.962116e − 001 68
533 1.578955e − 001 75
608 4.448880e − 001 48
656 2.274114e − 001 18
674 9.422296e − 002 8
682 1.123366e − 001 7
689 1.659383e − 001 10
699 2.400472e − 001 3
702 2.035321e − 001 3
705 2.367390e − 001 6
711 2.533541e − 001 0

TABLE 12
[0/90]s square plate SSSS, a/h = 10, 25 initial boxes.

Centers Error (%) Adds

409 2.607549e + 000 97
506 2.909581e − 001 37
543 2.425400e − 001 15
558 2.032778e − 001 11
569 2.095007e − 001 0

TABLE 13
[0/90]s square plate SSSS, a/h = 100, 16 initial boxes.

Centers Error (%) Adds

401 1.158316e + 001 64
465 6.423911e − 001 155
620 2.633451e + 000 131
751 1.097797e − 001 74
825 2.712160e − 001 1
826 2.015782e − 001 3
829 2.789185e − 001 0

TABLE 14
[0/90]s square plate SSSS, a/h = 100, 25 initial boxes.

Centers Error (%) Adds

409 9.781134e + 000 100
509 6.547123e − 001 86
595 2.146976e − 001 9
604 4.799680e − 001 30
634 3.497355e − 001 15
649 3.209971e − 001 16
665 3.653390e − 001 7
672 3.684787e − 001 0

FIG. 9. Final centers of the [0/90/0] square plate, SSSS, a/h = 10, 16 (left) and 25 (right) initial boxes.
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430 A.M.A. NEVES ET AL.

Taking in to consideration the number of initial boxes, two
remarks are to be made. At the end of the iterative process,
we always obtain more points if we start with 16 boxes, but it
doesn’t seem to have any influence in the number of iterations.

Thin plates generate more points than thick plates. The
clamped case needs more points than the simply supported case.

At the end of each iteration process, the cloud of points is
more dense near the boundary than in the central zone of the
plate.

The process used to find α from equation Lα = f is determi-
nant for the performance of the process. The GMRES method is
less sensitive to the shape parameter ε than the backslash Matlab
operator \ and it has influence on the number of centers to add
and remove and, consequently, in the number of final RBF cen-
ters. The backslash Matlab operator generates more points and
the deformed plate frequently degenerates. Using the GMRES
Matlab command, the deformed is more stable from the begin-
ning till the end of the iterative process, but it is much more time
consuming. This can be explained with the computational cost
and the storage requirements that, according to [17], increases
linearly with the number of iterations.

6. CONCLUSION
This article addresses the adaptive static analysis of isotropic

and composite plates with radial basis multiquadric functions.
The residual subsampling technique proposed by Driscoll

and Heryudono [1] was used for the domain with a fixed bound-
ary grid.

Numerical tests were then performed on the bending analysis
of isotropic and symmetric cross-ply laminated square plates. A
first-order shear deformation theory was used. When applying
the Driscoll and Heryudono residual subsampling technique to
bending analysis, the residual has to be improved to take in to
consideration the degrees of freedom, three in this case.

In this technique, the user must prescribe the residual toler-
ance, the initial number of nodes, and the initial shape parameter.
This parameter is then modified for each nodal box in order to
control the conditioning of the coefficient matrix.

We calculate the error of the present method with respect to
the exact solutions. The results obtained show that the adaptive
method converges to a very good solution after a few iterations
even by starting with a very coarse grid.

Further studies, including optimization of the shape param-
eter in each iteration, are sought. The combination of optimiza-
tion techniques with adaptive methods may reduce the number
of nodes in each iteration. The present method may generate
quite a large number of nodes, depending on the thickness of
the plate, and the way we select the shape parameters.
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