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Abstract-RBF approximations would appear to be very attractive for approximating spatial 
derivatives in numerical simulations of PDEs. RBFs allow arbitrarily scattered data, generalize 
easily to several space dimensions, and can be spectrally accurate. However, accuracy degradations 
near boundaries in many cases severely limit the utility of this approach. With that as motivation, 
this study aims at gaining a better understanding of the properties of RBF approximations near 
the ends of an interval in 1-D and towards edges in 2-D. @ 2002 Elsevier Science Ltd. All rights 

reserved. 
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1. INTRODUCTION 

Radial basis function (RBF) approximations have proven to be effective and flexible in the nu- 

merical solution of certain PDEs with partly or fully dissipative character (e.g., [1,2]). It would 

be very desirable to exploit their geometric flexibility and high accuracy also in strictly nondissi- 

pative situations. For example, we are interested in applying RBFs in a method-of-lines (MOL) 

type approach for approximating Maxwell’s equations in lossless media featuring an irregular 

interface. Figure 1 illustrates schematically how the RBF centers (represented by circles) could 

be distributed to capture the behavior at an interface. Overlapping the centers with a Cartesian 

grid on both sides of the interface would allow us to combine interpolation between the RBF solu- 

tion around the interface with a high-order finite-difference solution on the regular grid. To keep 
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Figure 1. Example application for applying RBFs to approximate Maxwell’s equa- 
tions in lossless media at an irregular interface. 
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Figure 2. Some RBF approximations of constant data over [-1, I]. 

computational costs low, this approach would use RBFs only where maximal geometric flexibility 

is needed. Our first obvious implementations of this method using standard time integrators led 

to time instabilities. So, it was decided to launch a more basic study of the key features of RBF 

approximations, with a focus on how they behave at boundaries. 

A common feature in all RBF approximations is how relatively inaccurate they are at bound- 

aries. For example, Figure 2 shows some RBF approximations to constant equispaced data in 

1-D. When approximating (nondissipative) wave-type PDEs, large boundary-induced errors of 

this type will contaminate the solution everywhere across the domain. Thus, it is necessary to 

understand how RBFs behave near boundaries and whether there is a way to improve accuracy 

there (as noted in [3,4]). This paper reports some results of this effort. 

The plan for the remaining sections of this paper is as follows: Section 2 gives a brief introduc- 

tion to RBFs and presents the RBFs considered in this paper. The following section introduces 

some very basic properties of cubic RBFs and cubic splines, and summarizes how they are re- 

lated in 1-D. In Section 4, we make some comments on cubic RBF approximations vs. those 

based on other types of basis functions. In Section 5, we focus on the accuracies of different RBF 
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variations at the edge of an interval, and some possible ways to increase the accuracy. Some 
numerical results for 1-D RBF interpolation are also presented. In Section 6, we focus on how 
our observations for RDFs in 1-D carry over to 2-D, along with some numerical results, The 
concluding section summarizes our observations. 

2. DEFINITION OF RBF APPROXIMATIONS 

The following defines a “basic” RBF approximation in any number of dimensions. 

DEFINITION 2.1. Given a function 4(r), P 2 0, distinct centers 20, ~1,. . . , XN, and data fi = 

f(Xi), i = O,l, . . . ( N, the bask interpolating RBF approximation is 

s(z) = 5 kN]z - Xillz), (2.1) 
i=o 

where the Xi are chosen so that s(xi) = fi. The variable x and points xi can here be either 
scalars or vectors. 

The types of basis functions we will consider in this study are 

Piecewise Smooth: 

4(r) = r3, 

4(r) = r5, 

4(T) = r2 logr, 

4(r) = (1 - r)Tp(r), 

cubic RBF; 

quintic RBF; 

thin plate spline (TPS) RBF; 

Wendland functions (see [5]), where p is a polynomial. 

Infinitely Smooth: 

4(r) = J-7 multiquadric (MQ) RBF; 

4(r) = l 1 + (E?y 
inverse quadratic (IQ) RBF. 

We are in this study primarily concerned with the accuracy of RBF approximations. For some 
“basic” RBF approximations, and also for some RBF approximations which incorporate boundary 
enhancements (to be discussed later), there exist remote possibilities that singular linear systems 
can arise. Comments on this issue can be found in [6], and will not be discussed further here. 

3. CUBIC RBFS AND THEIR CONNECTION TO SPLINES 

3.1. Infinite Interval 

In the absence of boundaries, there is a simple relationship between cubic B-splines (denoted 
by Bs(x); the nonzero cubic spline with the narrowest support) and cubic RBFs. 

THEOREM 3.1. On a unit-spaced I-D grid 

B3(x) = $ [lx + 213 - 4 (x + 113 + 6 /xl3 - 4 lx - 113 + lx - 213] . 

This is a special case of&(x) as follows (assuming k odd): 

Bk(X) = - 2;! g-l)- (“;‘> lx+? -vik. 

As is conventional, the normalization factor is here chosen SO that ~~~k+:);j~2 Bk(z) da: = 1. 
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COROLLARY 3.2. We can translate between a B-spline expansion Ca&(a: + Ic) and a cubic 
RBF expansion c X~/Z + k13 by means of 

XI, = $ [ale-2 - 4ak-1+6a~ -4a/c+l+ak+z]. 

Figure 3 summarizes the key properties of some cubic spline/cubic RBF expansions on an 

infinite interval. In addition to Corollary 3.2, we note the following. 
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Figure 3. Examples of cubic splines/cubic RBF approximations on an infinite inter- 

val. 
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Figure 3. (cont.) 

l For a cardinal function (equal to one at one node point and zero at all others), the 
oscillations in the cubic RBF approximation decay exponentially as we move out from the 
center. The amplitude ratio of successive oscillations approaches -2 + & x -0.2679. 

l For a step function, the Gibbs overshoot reaches a maximum of (l/6) (8+2fi-fi-d) M 
1.1078 at x = (l/6) (-3-a+& x -0.3804. This can be compared to a maximum value 
of approximately 1.1411 in the case of trigonometric interpolation [7]. This latter value 
is also what arises for polynomial interpolation of increasing order (and interval length). 
For truncated Fourier expansions, the value is l/2 + (l/r) $r(sint/t) dt PZ 1.0895. 

3.2. Boundaries 

Since RBFs behave badly at the ends of an interval (as we saw in Figure 2), and quite good end 
conditions have been devised for cubic splines (e.g., natural spline and Not-a-Knot conditions), 
it is of obvious interest to see how these carry over from cubic splines to cubic RBFs. 

Equivalence of cubic spline and cubic RBF 

When using cubic splines to approximate a given function one must choose two extra conditions 
to make the solution unique. It is natural to ask if these conditions can be chosen to reproduce 
a cubic RBF approximation. The following describes how this can be done. 
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Suppose for simplicity that 

--l=xo<xl<~~.<xN=l~ (3.1) 

Every term in the RBF sum for s(z) is a cubic which flips its sign at some point within 

[-1, 11. Hence, if s(z) = ~~~+bz~+c~+n! for 2 > 1, we must have s(z) = -a~3-bz2-cz-d 

for z 5 -1. This gives 

s(l) = a + b + c + d, ~(-1) =a-b+c-d, 

s’(l) = 3a + 26 + c, s/(-l) = -3a + 2b - c, 

s”(1) = 6a + 2b, ~“(-1) = 6a - 2b. 

Eliminating a, b, c, d leads to the two end conditions 

s”(1) = 2s’(l) - s’(4) - i(s(l) + s(-1)) 

s”(-1) = s’(1) - 2s’(-1) - $(I) + s(-1)). 
(3.2) 

Imposing these conditions (3.2) on a cubic spline will recreate the basic cubic RBF. These 

seemingly strange end conditions coupling the two sides together are the cause of the oscillations 

seen in the cubic RBF approximation shown in Figure 2. 

Natural cubic spline 

A natural cubic spline is obtained by choosing as the extra two conditions that the second 

derivative at each end be 0. The equivalent “natural” cubic RBF s(z) is obtained by letting 

s(z) = a + bx + C&lx - xii3 and enforcing c Xi = 0, c Xix, = 0. 

This can be seen as follows (assuming again (3.1)). 

For x 2 1 (i.e., 2 > xi), s(z) = a+bx+C&(~-xi)~. Therefore, s”(2) = 6CXi(s-z~) = 

6x C X, - 6 C &xi = 0 (because of the imposed constraints). Hence, s”( 1) = 0, and 

similarly ~“(-1) = 0. Within (-l,l), s(x) is a piecewise cubic with jumps in the third 

derivative at the data locations. The function s(z) satisfies all the requirements of the 

natural spline. Since this is well known to be unique, it must be equal to s(z). 

Not-a-Knot cubic spline 

If the two extra conditions for the cubic spline are chosen so that there is no jump in the third 

derivative at the first and last interior data points (assuming the points are arranged in ascending 

order), then the cubic spline is called a Not-a-Knot cubic spline. In cubic RBF terms, this means 

moving the centers at those points outside the interval. In other words, the set of points at which 

interpolation conditions are imposed is slightly different from the set of RBF centers. 

This method is illustrated as follows: 

where the OS represent the centers and the Xs the data locations. The approximation in the 

interior is independent of how far the centers are moved outside of the interval. 

4. OTHER TYPES OF RBFS 

Cubic RBFs are very convenient for analysis in 1-D because of their very close connection to 

cubic splines. However, many other choices of RBFs are available. We give below a few brief 

comments on some of these. 



RBF Approximations Near Boundaries 479 

10' 10' 10' 10’ 
N N 

Figure 4. Condition numbers of RBF interpolation matrices as a function of the 
number of centers/data nodes in 1-D. 

4.1. Quintic 

Just as cubic RBF approximations are closely related to cubic splines, quintic RBF approxi- 

mations are similarly related to quintic splines. The natural spline will in this case be defined 

by ~“‘(-1) = st4)(-1) = 0, s”‘(1) = sc4)(1) = 0 and is realized via RBFs when interpolating 

with s(z) = (r+~~+y~~+~~,X~~z-z~~~ under the constraints CXi = 0, CXizi = 0, CA& = 0. 

Outside the interval, S(X) will grow at most quadratically with z (compared to at most linearly in 

the cubic case). The Not-a-Knot boundary condition will in the quintic case have a distribution 

of centers and interpolation nodes 

0 0 0 x x @ 0 *.. ... 8 8 x x 8 0 0% 

The first two interior node locations on each side have their centers moved outside the interval 

(again, their exact final locations do not matter, as far as the approximation within the interval 

is concerned). 
In general, errors when using quintic RBF approximations will be two orders of h better than 

for cubic RBFs. However, Figure 4a shows that the condition numbers of the quintic RBF 

interpolation matrices are orders of magnitude greater than their cubic counterparts. 

4.2. Thin Plate Splines (TPS) 

Like cubic and quintic RBFs, these are parameter free. Their justification includes extensive 

theoretical accuracy results and a variational theory in 2-D [6,8]. Figure 4a also shows that the 

TPS RBF interpolation matrices are very well conditioned. 

4.3. Wendland Functions 

Unlike the RBFs mentioned previously these are compactly supported, and their exact form 
depends on the number of space dimensions of the approximation. Two examples of Wendland 
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functions are &,2(r) = (1 - r):(8r2 + 5r + 1) and $2,2(r) = (1 - r)$(35r2 + 18r + 3), constructed 
for use in 1-D and 2-D, respectively. These RBFs require some compromise between wide sup- 

port/good accuracy and good sparsity/low accuracy, an interesting realization of which is the 

multiscale iterative method described in [9]. For an illustration of how the conditioning of the 

RBF interpolation matrix using the Wendland function $1,~ (denoted by Wend12) increases as 

the support radius (SR) and the number of centers/data values increases, see Figure 4b. 

4.4. Multiquadric (MQ) 

These were first applied by Hardy [lo] and perform well in applications [11,12]. MQ RBFs 

are infinitely smooth and involve a free parameter. There is a trade off in the choice of this 
parameter: small E leads to good accuracy, while large E provides good conditioning. Figure 4c 

shows how the condition number of MQ RBF interpolation matrices increases with decreasing E 

and increasing N. 

4.5. Inverse Quadratic (IQ) 

This case is of interest since 

l it contains a free parameter (like MQ) which can to be adjusted for best tradeoff between 

accuracy and conditioning, and 

l its form is algebraically simple enough to allow more closed-form analysis than, say, mul- 

tiquadrics. 

An example of the latter is the following closed-form expression of the RBF coefficients for a 

cardinal function on an unbounded, unit-spaced grid: 

k.s sinh (X/E) 
Ak = (-l) T2 (4.1) 

This can be derived from [13, equation (7)]. 

We can also find the cardinal function itself, for arbitrary E, as 

K 
S(X,E) = 

2 sinh (T/E) sin TX sinh (X/E) cos KX 

r(cosh (27r/&) - cos 27rz) X 
+ cash 3 

I 0 

The key ingredient in working out s(x, E) = cr=_, &/(I + (E(IC - x))~) is the formula 

O” (-1)” cask< 
c k._oo 1+ (E(k - z))2 

27r cos TX cos x[ cash (C/E) sinh (n/~) + sin XX sin x[ cash (X/E) sinh (E/E) (4.3) 
=_. 7 

& cash (2n/&) - cos 27rx 

< E [-.ir, nl. 

Figure 4d illustrates the effect of E on the conditioning of the RBF interpolation matrix. One 

way the ill-conditioning manifests itself is in rapid growth of the expansion coefficients Xi as E -+ 0. 

Equation (4.1) implies 
xk = ~~(-1)” sinh (T/E) 

27r cash (,&r&/2) + O(s) 

uniformly in k. As E -+ 0, each coefficient XI, will grow exponentially 

A,, = 
,2(-q”&+) 

4lr . (4.4) 

Despite the fact that the system is ill-conditioned, especially as E -+ 0, the RBF approximation 

remains bounded and well defined (indeed, for the cardinal data, (4.2) shows that lim,,e s(x, E) = 

sin(7rx)/(7rx). I ssues regarding limits for E --+ 0 are discussed more in [14]. 
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Figure 5. Interpolation/extrapolation of the function f(z) = - arctan(5(z + l/2)) 
(shown 8s front curve) when using different combinations of cubic RBFs with global 
polynomial terms (and matching constraints). 

5. EDGE EFFECTS AND POSSIBLE REMEDIES IN 1-D 

All three types of end conditions for cubic splines/RRFs mentioned in Section 3 produce 0(h4) 

convergence in the interior, but they differ significantly in their accuracy near the ends. We list 

below a few additional ways one might use to improve the edge accuracy. Later in this section, 

we will test all the different approaches, when combined with different RBF functions, in 1-D. 

Section 6 will contain similar tests for 2-D. 

5.1. Adding Polynomial Terms 

Although natural spline (enforcing the usually incorrect s”(z) = 0 at both ends) is quite 

inaccurate, the RBF implementation of it can be generalized. Instead of adding 1, z as available 

basis functions and enforcing C Xi = 0, C Xisi = 0 we can add 1, x, x2,. . . , xf’ and enforce 

~x~=o,~x~x~=o,~x~xc”=o )...) c &xp = 0 where p takes any of the values 0, 1,2, . . . , N 

(and where N is one less than the number of grid points xi, i = 0, 1, , . . , IV). The case p = 1 

corresponds to a natural spline, and p = N corresponds to classical polynomial interpolation (the 

N + 1 constraints now force all N + 1 RBF coefficients to vanish); Figure 5 shows the results 

of a numerical experiment using cubic RBFs with varying p. The front curve shows f(x) = 

- arctan(5(x+ l/2)), and the following curves different approximations obtained by interpolating 

f(x) at 11 equispaced points over [ -1, l] ( i.e., N = 10). The first of the approximations is the 

basic cubic RBF (no end corrections); behind this follow the results for p = 0, 1, . . . , 10. 

Figure 6 illustrates the accuracy of the derivative approximation to this function f(x) across 

[-1, l] as the degree of the global polynomial is varied. If the function is not well resolved (as is 

the case here), increasing p hurts the accuracy. On the other hand, we would expect-and will 

indeed see in 2-D-that for a highly resolved smooth function which is well approximated by low 

degree polynomials, this approach can significantly reduce boundary errors. 

5.2. Super Not-a-Knot (SNaK) 

The idea behind SNaK is to modify Not-a-Knot by shifting the outermost two centers entirely 

outside the domain. 

The centers vs. data points for SNaK are illustrated by 
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Figure 6. Log of the absolute error in the derivative approximation of the func- 

tion f(r) = - arctan(5(z + l/2)) when using different combinations of cubic KBFs 
with global polynomial terms (and matching constraints). The approximation was 
calculated using 11 equispaced centers/data values across [-1, 11. 

6 

2 

Figure 7. Comparison of interpolation/extrapolation of the function f(r) = - arctan 
(5(r + l/2)) for basic, Not-a-Knot, and Super Not-a-Knot (SNaK) RBFs. 

One can now show for cubic RBFs that 

l the RBF approximation across the interval (indeed up to the innermost of the translated 

centers) is entirely independent of how far the centers have been shifted out (hence within 

the interval, the result is identical to a standard Not-a-Knot spline), and 

l O(h4) accuracy holds also a distance h outside the main interval (assuming the shifted 

centers are still further out). This improves on the Not-a-Knot accuracy of O(h3) and 

natural spline accuracy of 0( h2). 

Figure 7 graphically compares the SNaK method against regular Not-a-Knot and basic cubic 

RBF approximation. The increased order of accuracy is not well visible in this type of graph (we 

will, however, see it in a following 2-D test case). 

5.3. Boundary Clustering of Nodes 

The idea here is borrowed from polynomial interpolation in 1-D. High-degree equispaced inter- 

polation features a disastrous Runge phenomenon (usually exponential blow-up towards the end 
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Table 1. Distribution of 41 data values over I-1, I] for different values of y and the 
corresponding maximum (in magnitude) error across the interval in the MQ and IQ 
approximations to the function f(z) = - arctan(5(e + l/2)). 
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of an interval, as seen in the p = 10 case from Figure 5). Chebyshev interpolation simply clusters 
the nodes denser at the boundaries, and entirely avoids the problem; this is a highly regarded 
approach for the accurate approximation of smooth functions and forms the foundation for non- 
periodic pseudospectral methods. The left part of Table 1 shows different node distributions that 
can be generated by varying a parameter y, such that y = 0 corresponds to an equispaced grid 
and y = 0.5 to a Chebyshev-spaced grid (details on how these various distributions are calculated 
with y are given in [7, Section 3.31). As the table shows, increasing y lowers the resolution at the 
center of the interval. In the case of polynomial interpolation, this is a small price to pay for a 
vast edge improvement. 

The right part of Table 1 shows the maximum (in magnitude) difference between the func- 
tion f(z) = - arctan(5(a: + l/2)) and the MQ and IQ RBF approximations using the different 
distributions of nodes. We can see from the table that both approximations benefit from some 
amount of boundary clustering. A Chebyshev polynomial interpolant (based on the y = 0.5 grid) 
for this test case features a maximum error of 1.28. 10m5. Thus, both MQ and IQ RBFs do here 
about an order of magnitude better than the highly regarded Chebyshev approximation, and this 
without needing to resort to nearly as severe edge clustering (a benefit to the stability restriction 
in a time-dependent problem). 

5.4. Comparisons between the Different Edge Improvement Methods in 1-D 

All the edge improvement methods we have introduced apply not only to cubic RBFs, but 
also to all other RBFs (although smooth RBFs technically do not have “knots”, we keep the 
notation of Not-a-Knot and SNaK for these RBFs as well). Figure 8 compares the errors when 
the different boundary correction methods are combined with different RBFs for our f(z) = 
- arctan(5(a: + l/2)) test case. Whereas, Figures 5 and 7 showed approximations based on 11 
nodes, we show here errors when using 21 nodes. The function is very coarsely sampled; the top 
row of subplots shows significant interior errors. None of the edge corrections can be expected 
to reduce these (as the results confirm). We do, however, see reductions of edge errors in most 
cases. Since the main interest in using RBFs is in two or more dimensions, we postpone more 
extensive comparisons to the next section, where we use scattered 2-D node distributions. 

6. EDGE EFFECTS AND OVERALL ACCURACY IN 2-D 

It is only in two (and higher) dimensions that the geometric flexibility of the RBF approxima- 
tions becomes important enough to justify the relatively high computational cost of the approach. 
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Figure 8. Comparison of different RBFs in 1-D with varying boundary treatments. 
The top picture in each row shows a plot of the error in the RBF approximation 
to f(z) = - arctan(5(z + l/2)) using 21 data points across [-l,l]. The bottom 
picture shows a gray scde image of the absolute error in the RBF approximation 
across the interval. Errors range from 0 (white) to 0.002 (black). 

We make below some observations about the different edge enhancement methods, and compare 

how they hold up when applied to the test functions given in Figures 9a and b. 

6.1. Inclusion of Low-Order Polynomial Terms 

One can choose different types of extra terms, and also different types of constraints (as long 

as their number agree). Low-order polynomial-type constraints arise, however, very naturally if 

one wants to regularize the far field RBF approximation. 
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EXAMPLE. Consider 4(r) = r3. Show that the far field values of 
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Figure 9. Test functions for the 2D experiments. 
the data locations used in all experiments shown 
boundary clustering experiment. 

The black solid circles represent 
in Figures 11 and 12 except the 

4x7 Y) = c xi ((x - Xi)2 + (y - yi)2)3’2 

are minimized if one successively enforces 

c Ai = 0, 

c XiXi = 0, 
c Xiyi = 0; 

c AiXf = 0, CXiXiyi = 0, 

. . . 
c xiy; = 0. 

(6.1) 

SOLUTION. If we set x = r cos 0, y = r sin 8, and then expand (6.1) in powers of r around T = co, 

we get 

s(x, Y> = C Ai ((X - Xi)" + (y - yi)2)3’2 
=r3{CAi} 
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Figure 10. Different data/center distributions used in the numerical experiments. 
The solid circles represent the locations of the data while the open circles represent 

the locations of the centers. 

+r’{(-3~0~8) CAisi+(-3sin8)CXiy,} 

fr’ 
{ 

i(3-t cos 28) c A$! + (3 cos 0 sin 0) C XiziYi + i (3 - c0s2e) C A& 
1 

+... . 

The expansion continues with terms for r”, r-l, rm2, . . . giving, for each power of r, another row 

which vanishes if and only if the conditions in the matching row of (6.1) are satisfied. I 

The algebra proceeds essentially the same for all standard &functions, and results (at least 

in all cases we have tested) in the same constraints (6.1). Because the derivation was based on 

expanding in powers of r around r = co, one might think that thin plate splines might lead 

to different types of constraints (given the fact that r2 log r has a branch point at r = oo). 

However, it transpires that, although some log r-factors also enter, the conditions associated with 

the smallest far field again become (6.1). 

Given the form of the constraints in (6.1), it seems quite natural to let the extra functions to 

include be 
1, 

2, Y> 

x2, XY, Y2, 

The case of including constant and linear extra functions, with matching constraints, is illus- 

trated in the second row of Figures 11 and 12. These approximations were computed using the 

distribution of data points and centers shown in Figure 10a. 

6.2. Not-a-Knot and Super Not-a-Knot 

Not-a-Knot and Super Not-a-Knot worked very well for the piecewise smooth RBFs in 1-D. For 

our 2-D experiments, we started with the distribution of 200 data points shown in Figure 10a. 

The data points are irregularly distributed, but with a fairly uniform density both along the 
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Figure 11. Comparison of the (absolute) error of different RBFs with varying bound- 
ary treatments for the function f(z, y) = 1/[25 + (r - l/5)’ + 2y*] inside the unit 
circle. The black solid circles are the locations of the data values. Errors range from 0 
(white) to 2.0. 10e5 (black). 

domain boundary and throughout the interior. The Figures lob and 1Oc show how we moved out 

some centers (open circles) from inside to outside the domain for our Not-a-Knot and Super Not- 

&Knot implementations, respectively. The numerical experiments with these implementations 

are shown in the third and fourth row of Figures 11 and 12. 

6.3. Boundary Clustering of Nodes 

Following the ideas of Section 5.3, the nodes are distributed so that they are denser at the 

boundaries. Figure 10d shows the distribution used in our numerical experiments. The last row 

of Figures 11 and 12 shows the various RBF approximations using this distribution of data. 

6.4. Comparisons between the Different Edge Improvement Methods in 2-D 

Figures 11 and 12 illustrate the errors when different RBFs and edge enhancement techniques 
are applied to the two test cases shown in Figure 9. The first case (f(z) = 1/(25+(x-1/5)2+2y2)) 

is very smooth, and m-solving it over 200 scattered nodes is representative of the situation when 
using RBFs for high-accuracy solutions of PDEs. The top row of subplots in Figure 11 shows 
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Figure 12. Comparison of the (absolute) error of different RBFs with varying bound- 
ary treatments for the function f(z, y) = arctan(2(x + 39 - 1)) inside the unit circle. 
The black solid circles are the locations of the data values. Errors range from 0 
(white) to 0.01 (black). 

that edge errors dominate for all the choices of RBFs. The next four rows of subplots show that 

all of the boundary correction approaches are effective. The “constant plus linear” works well 

in all cases of RBFs. The small residual ring still visible for TPS, Wend22, and MQ suggests 

that possibly including further terms might improve the boundary situation even more. Both 

variations of Not-a-Knot are highly effective for all RBF cases apart from Wend22. The boundary 

clustering idea needs to be used with caution-it appears to be the most “delicate” approach of 

those tested. Too much boundary clustering hurts overall accuracy through depletion of points 

in the interior. 

It would be of interest to test the different boundary correction methods in more complex 

geometries. Quite possibly, the Not-a-Knot type conditions-being more “local” in character 

than including “constant plus linear” global functions-would adapt better to the task of edge 

correction along lengthy and irregular boundaries. 

The test function f(z) = arctan(2(z + 3y - 1)) is (like our 1-D arctangent) too rough to 

be well resolved on the present scattered set of nodes. The top row in Figure 12 shows interior 

errors dominating. None of the boundary correction methods offer any help against this-indeed, 
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Figure 13. Comparison of the (absolute) error of Fourier-Chebyshev pseudospectral 
approximation at 224 data locations (shown by black solid circles) to the (absolute) 
error of the MQ RBF approximation at 200 scattered data locations (shown by 
black solid circles). Part (a) shows the errors, ranging from 0 (white) to 2.0. lo-’ 

(black), to the function f(z,y) = l/(25 + (z - 1/5)2 + 2~~). The Super Not-a- 
Knot boundary treatment has been applied to MQ RBF approximation in this part. 
Part (b) shows the errors, ranging from 0 (white) to 0.01 (black), to the function 
f(z, y) = arctan(2(r+3y - 1)). No boundary treatment has been applied to the MQ 
RBF approximation in this part. 

boundary clustering, with its associated interior node depletion, is outright counterproductive in 

this context. 

At first glance, it might appear that the errors in this last test case are disappointingly large. 

We show next that this is not the case-they are in fact remarkably small. 

6.5. Accuracy Comparison for RBFs against Some Other Techniques 

It needs to be stressed that the errors we have seen in Figures 11 and (especially) 12 actually are 

very good. The test function f(z, y) = arctan(2(z -t 3y - 1)) turns out to be surprisingly difficult 

to fit well with any method which uses data at about 200 node points. Figure 13 compares the 

errors for two different approaches: 

l multiquadric RBFs, 200 nodes, irregular grids (shown in Figures 10a and lOc), with E = 3, 

and 

l polar grid pseudospectral (regular grid with 16 points Chebyshev distributed across 

each r E [-1, 11, 14 angles 0 E [O,r); a total of 224 distinct points). 

In the first case (top row in Figure 13), the MQ method is enhanced with the Super Not-a-Knot 

boundary treatment. The error is very small (around 10e7)), but even so larger than that of 

the Fourier-Chebyshev method which for very smooth functions becomes extremely accurate (for 

this case the error is around 10Vg). However, for the second test function, MQ is seen to be 
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far more accurate than Fourier-Chebyshev. That is extremely encouraging-the latter method is 

well established as being of particularly high accuracy in the very advantageous case of perfectly 

regular grids. (Although here somewhat less costly and better conditioned than MQ, we should 

note that the Fourier-Chebyshev method does not generalize to irregular domains). 

7. CONCLUDING OBSERVATIONS 

Even if a scattered node set is relatively coarse, approximations based on smooth RBFs are 

found to be highly effective in approximating smooth functions (compared even to Chebyshev 

pseudospectral methods on regular grids). In csses of very fine resolution, edge errors start to 

dominate over interior errors. For this situation, several edge enhancement techniques have been 

studied here. They all prove to be effective, at insignificant or no extra computational cost (with 

the SNaK method generally the best for all our RBF choices apart from the Wendland func- 

tion 42,2(r)). The correction approaches ameliorate or altogether eliminate the usually notorious 

problem of approximating function and derivative values near edges of computational domains. 

The idea of deploying some centers outside the main domain of interest appears also in the 

recent paper [15], although arrived at from different initial considerations. 
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