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Spectral algorithms offer very high spatial resolution for a wide range of non-
linear wave equations on periodic domains, including well-known cases such as
the Korteweg–de Vries and nonlinear Schr¨odinger equations. For the best computa-
tional efficiency, one needs also to use high-order methods in time while somehow
bypassing the usual severe stability restrictions. We use linearly implicit multistep
methods, with the innovation of choosing different methods for different ranges in
Fourier space—high accuracy at low wavenumbers andA-stability at high wavenum-
bers. This new approach compares favorably to alternatives such as split-step and
integrating factor (or linearly exact) methods.c© 1999 Academic Press
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1. INTRODUCTION

We consider the numerical solution of nonlinear wave equations of the form

ut = N(u)+ L(u)+ g(x, t). (1)

We restrict the description to one space dimension for notational simplicity, and we require
the x-domain to be periodic. The functionN(u) is nonlinear and may depend also onux,
etc.; we can embed the forcing functiong(x, t) into N(u) and need not consider it further.
The linear part isL(u)= c(t)i m+1(∂mu/∂xm), but more general linear dispersive terms are
also treatable. The real functionc(t) is often a constant.

Many interesting equations are of the form (1), such as the Korteweg–de Vries equation,

ut + 6uux + uxxx = 0 (KdV)
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and the nonlinear Schr¨odinger equation,

iut + |u|2u+ uxx = 0. (NLS)

For these two examples, inverse scattering theory [15–17] provides analytic solutions in
principle. These two equations often arise as leading-order approximations to nonlinear
phenomena. In the few cases where analytical techniques remain available for more accurate
models, their complexity is often prohibitive. Numerical techniques are usually more widely
applicable. The algorithm presented here is designed to provide highly accurate solutions
to all equations of the form (1) at the lowest possible computational cost.

The topics of the remaining sections are as follows:

2. Linearly implicit multistep methods for ordinary differential equations (ODEs)
3. The key idea behind the present algorithm
4. Stability analysis and refinement of ideas
5. Numerical comparisons to leading alternative methods
6. Conclusions

2. LINEARLY IMPLICIT MULTISTEP METHODS FOR ODES

Linear multistep methods [11] for solving the ODEy′ = f (t, y) use values off at s
consecutive time levels, requiring only one evaluation off per time step. One way to view
(and generate) the explicit Adams–Bashforth (AB) and implicit Adams–Moulton (AM)
schemes is

yn+1− yn =
∫ tn+1

tn

(
interpolating poly-
nominal for f over

{
AB: tn−s, tn−s+1, . . . , tn
AM: tn−s, tn−s+1, . . . , tn, tn+1

})
dt. (2)

Following the notation in [6], we illustrate the stencils of linear multistep methods as shown
in Fig. 1. Implicitness typically increases the stable time step size for a stiff problem but
incurs the considerable cost of solving a (usually) nonlinear system at each time step.

Writing (1) in Fourier space as

ût = N̂(û)+ L̂(û), (3)

FIG. 1. Stencil notation for common mulitstep methods.
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we can approximate it as

ûn+1− ûn =
∫ tn+1

tn

(AB-type approx. forN̂(û)) dt +
∫ tn+1

tn

(AM-type approx. forL̂(û)) dt.

(4)

In the case of, say, NLS,̂N(û) would be evaluated in physical space, andL̂(û)=−iω2û,
whereω is the Fourier wavenumber. Using third-order Adams formulas, for example, we
would obtain

ûn+1 =
(

1− 5

12
kL̂

)−1[
ûn + k

12
(8L̂(ûn)− L̂(ûn−1)

+ 23N̂(ûn)− 16N̂(ûn−1)+ 5N̂(ûn−2))

]
.

(We present this for illustration only, not as a recommendation.) Since theL̂-operator is
diagonal, the need to invert thêL term does not incur any extra computational cost. This
idea has appeared many times in the literature for both multistep and Runge–Kutta methods,
often for diffusive problems and bearing a name such as “implicit–explicit” or “linearly
implicit” [1–5].

Graphically, we illustrate a scheme of the form (4) in Fig. 2. Employing a slightly different
û-stencil than the one for AB/AM, this type of argument led Chan and Kerkhoven [5] to
propose

h s

●

■ ●

for the KdV equation. Their method, which is applicable to any equation of the form
(1), combines a standard leap-frog approximation for the nonlinear part with anA-stable
trapezoidal (or Crank–Nicolson) rule for the linear part. Although a mild stability restriction
is theoretically in force, conditions are far more favorable than thek=O(h3)andk=O(h2),
respectively, that would normally be expected of approximations to (KdV) and (NLS); here
h andk denote space and time steps, respectively. In practice this method is limited by
second-order accuracy, not by stability.

FIG. 2. Illustration of a linearly implicit AB/AM scheme. (It is not necessary in general that theN̂ and L̂
stencils stop at the same time level.)
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3. KEY IDEA BEHIND THE PRESENT ALGORITHM

To achieve high computational efficiency, we now consider higher-order methods of the
form indicated by Fig. 2. Because we assume pure propagation problems, the linearization
of the problem is expected to have purely imaginary spectrum. Hence we are primarily
interested in the stability ordinate (extent of stability domain along the imaginary axis) of
the constituent multistep methods. The stability ordinate is nonzero in the AB case only
for orders 3,4, 7,8, 11,12,. . . and in the AM case only for orders 1,2, 5,6, 9,10,. . . (see
[9, 10] and the proofs in [8]); hence, we must choose from among these methods.

Because no multistep method of order greater than 2 can beA-stable [12], we are seem-
ingly faced with an unacceptable time step restriction from the linearL̂(û)= iωmû term.
However, we make some observations concerning the Fourier wavenumberω:

1. For low values of|ω| (where most of a smooth solution’s “energy” is located), the
time steps are accuracy- and not stability-limited, and

2. The ODEs for differentω can be treated with different multistep solvers. (Runge–
Kutta methods, whose internal stages require identical information across all modes, do not
allow the needed flexibility.)

A simple idea would therefore be: Given a time stepk, use a higher-order scheme for as
high |ω| as its stability ordinate allows, and elsewhere fall back to theA-stable AM2 for
the linear part (henceforth we append an integer to indicate order of accuracy). This idea
can be illustrated:

Low |ω| High |ω|
h s h s

■ ● ● ■ ● ●

● ● ●
...

...
...

● ● ●

Terms such as “low” and “high” will be made precise later. This basic idea must be
applied with some care. In the next section we show the necessity of two refinements:

1. The AM2 stencil is modified for the high-|ω| range, and
2. The low-|ω| range is further divided into a pure AB method and a linearly implicit

AB/AM method.

4. STABILITY ANALYSIS

To study the stability of a linearly implicit multistep method, we linearize

ût = N̂(û)+ L̂(û)

to obtain

ût + iαû+ iβû = 0, (5)

for real constantsα andβ. Clearlyβ =ωm, but the interpretation ofα is less certain. We do
assume thatα is nonzero but of a lower order inω than isβ.
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FIG. 3. Stability region for the linearly implicit AB4/AM2 method. The shaded portion indicates time stability
of the method for choices of time stepk and parametersα andβ in (5).

Stability analysis of composite methods has been carried out before [2, 3]. For any
combination of the real quantitieskα andkβ we can determine whether growth in time
is possible. From such data we can draw stability regions in thekα–kβ plane. Note that
these pictures depend strongly on the assumption in (5) that the individual linearizations
have imaginary spectra. Hence, different pictures must be generated for the analysis of
convection-diffusion equations, for example.

We begin with the combination AB4/AM2, which combines high accuracy for the non-
linear term with anA-stable method for the linear term. The stability region is shown in
Fig. 3. While thekβ-axis is included, as required byA-stability, we see that any nonzeroα
is likely to destabilize the method. We attribute this behavior to the fact that the imaginary
axis is on the boundary of the classical stability region for AM2. The combination does
indeed behave poorly in experiments with nonlinear wave equations. We use it to illustrate
the importance of analyzing the interaction of the explicit and implicit methods as opposed
to relying solely on their independent behaviors.

Figure 4 shows stability diagrams for the combinations AB4/AB4 (i.e., classical AB4),
AB4/AM6, AB4/AM2∗, and also the Chan & Kerkhoven (CK) scheme. Here AM2∗ denotes
the usual AM2 scheme

yn+1− yn = k

2
(y′n+1+ y′n)

modified to

yn+1− yn = k

2

(
3

2
y′n+1+

1

2
y′n−1

)
.

This method is also second order accurate andA-stable when used by itself, but the imaginary
axis is well in the interior of the stability region (i.e., AM2∗ is L-stable [12]). The stability
of AB4/AM2∗ is greatly improved over that for AB4/AM2 (compare to Fig. 3).

We again note that for our purposes,α is nonzero and (at most wavenumbers) is much
smaller thanβ =ωm. Hence we are interested in methods that have coverage far along and
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FIG. 4. Stability regions for linearly implicit AB/AM methods for (5). From upper left are AB4/AB4 (equiv-
alent to classical AB4), AB4/AM6, AB4/AM2∗, and the Chan and Kerkhoven method.

near theβ-axis. Although CK effectively removes the stability limitation imposed byβ, it
suffers from low (second order) accuracy.

In the previous section, we proposed using different integrators for different ranges of the
wavenumber. One idea would be to use ordinary AB4 for low values of|β| and then switch
to CK for high values. However, the small stability ordinate for AB4 forces the switch to CK
at an undesirably small value ofk|β|. We therefore improve further by using AB4/AM6 in a
medium range. Figure 4 shows how this roughly triples the stability region along theβ axis.
(Although certain sectors ofα andβ are unstable for this method, this instability is so weak
that it has no adverse effect, especially since the smallest|β|-values are still handled by
pure AB4.) The last modification is to substitute AB4/AM2∗ for CK, thus allowing a single
explicit method for allβ and improving the accuracy for the nonlinear part of the equation.

These considerations lead us to the present strategy:

Low |β| ... Medium|β| ... High |β|

AB4/AB4
... AB4/AM6

... AB4/AM2∗

Cutoff Cutoff
|β| = 0.43/k |β| = 1.36/k

We make a few observations.
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•As k→ 0, our approach becomes a classical AB method.
• The cutoffs are derived from the usual stability ordinates of AB4 and AM6; they

should perhaps be used conservatively due to nonzeroα.
• The AB/AM stability regions are needed to justify the effectiveness of the linearly

implicit combinations, but not for the implementation of the method.
• In some of the tests below, we have in a straightforward manner substituted AB7 for

AB4.

5. NUMERICAL COMPARISONS

We restrict our comparisons to a few major numerical methods applied to the KdV and
NLS equations. The methods we compare are:

LI: The present method of using linearly implicit Adams methods, with different
methods selected for different wavenumber ranges.

CK: The method of Chan and Kerkhoven, as described in Section 2.
SS: The split-step Fourier method. In its simplest form (giving first order accuracy in

time), one advancesut + A(u)+ B(u)= 0 by solving

ut + 2A(u) = 0, from t to t + 1

2
k, followed by

ut + 2B(u) = 0, from t + 1

2
k to

(
t + 1

2
k

)
+ 1

2
k = t + k.

The two time increments are each of the length1
2k; we denote this by

{
1
2,

1
2

}
. One gets

second-order accuracy in time by alternatingA, B, A in the equations above while using
the time increments

{
1
4,

1
2,

1
4

}
. Yoshida [18] showed a systematic way to find split-step

methods of any even order. From an implementation standpoint, one simply chooses certain
longer time increment sequences (while again alternatingA, B, A, B, . . .). Table I lists the
coefficients of methods of order 1, 2, 4, and 6.

The purpose of splitting is most often to alleviate stability limitations by permitting a
linear subproblem to be solved analytically. When such linear problems are to be solved
“back-to-back” in neighboring time steps, the adjoining substeps can be merged to improve

TABLE I

Coefficients of Split-Step Methods

Method Time increment sequence (in general not unique)

SS1 0.50000 00000 00000 00000 0.50000 00000 00000 00000
SS2 0.25000 00000 00000 00000 0.50000 00000 00000 00000 0.25000 00000 00000 00000
SS4 0.33780 17979 89914 40851 0.67560 35959 79828 81702−0.08780 17979 89914 40851

−0.85120 71919 59657 63405 −0.08780 17979 89914 40851 0.67560 35959 79828 81702
0.33780 17979 89914 40851

SS6 0.19612 84026 19389 31595 0.39225 68052 38778 63191 0.25502 17059 59228 84938
0.11778 66066 79679 06684 −0.23552 66927 04878 21832 −0.58883 99920 89435 50347
0.03437 65841 26260 05298 0.65759 31603 41955 60944 0.03437 65841 26260 05298
−0.58883 99920 89435 50347 −0.23552 66927 04878 21832 0.11778 66066 79679 06684

0.25502 17059 59228 84938 0.39225 68052 38778 63191 0.19612 84026 19389 31595
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efficiency. In solving NLS, split-step profits from the existence of a simple analytic solution
for the nonlinear equation in physical space.

IF: The integrating factor method, as described in [13]. This has also been called
“linearly exact” [7] and is related to exponential time stepping in electromagnetics [14]. To
solve, say, NLS, we multiply (3) byeiω2t to obtain

v̂t = ieiω2t N̂
(
e−iω2t v̂

)
, (6)

wherev̂= eiω2t û. The stability restriction for (6) is relatively mild for any ODE method,
but [7] points out that the error for this problem will be much larger than that of the original
problem, because of the rapidly varying coefficient that has been introduced. In the present
comparison we have used AB4 and AB7 (omitting AB5 and AB6 since they have zero
stability ordinate).

We test the approaches discussed above on the KdV and NLS equations. In the SS methods
the linear part was advanced analytically in Fourier space for both equations. Advancing
the the nonlinear part of NLS is exact in physical space; for the KdV equation, the nonlinear
part was advanced using a high-order Runge–Kutta integrator. Because this procedure is
somewhat problematic for orders greater than four, SS6 was not implemented for the KdV
case.

Figure 5 shows the analytical evolution from initial to final time of a two-soliton test case
for KdV, and Figs. 6 and 7 display similarly our test case for the NLS equation. The test
cases were discretized using 512 points in space, sufficient for roughly 10−12 computational
accuracy for KdV and 10−8 for NLS. (Throughout the experiments we measure error in the
L2 norm relative to the initial condition.)

Figure 8 shows how the accuracy at the final time in KdV improves as smaller time steps
are used. In order to make fair and robust comparisons, we measure computational effort in
terms of the number of FFT evaluations, which measures well the total computational cost
of these methods. In practice one wishes to time step as economically as possible while
obtaining the full accuracy of the spatial discretization. We are therefore interested in the
points in Fig. 8 at which the temporal errors have just reached the spatially imposed “floor,”

FIG. 5. Two-soliton test solution for KdV.
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FIG. 6. Two-soliton solution for NLS, in magnitude.

as indicated by the boldface labels. (Convergence curves are extrapolated linearly where
necessary.) A similar plot for NLS is shown in Fig. 9.

From these comparisons we note:

• For each time stepping method, the efficiency increases with the order of accuracy.
The improvement is quite dramatic in going from order 2 to 4 but levels off somewhat in
moving further to orders 6 and higher.
• Comparing methods of the same order, our LI method is more cost effective than

the IF method, which in turn is superior to SS implementations.
• The performance gaps are larger for KdV than for NLS. This is presumably because

FIG. 7. Snapshots of real (solid) and imaginary (dashed) parts of the NLS solution of Fig. 6.
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FIG. 8. Performance for KdV. For clarity, methods are grouped by order. Actual data are shown as filled
circles; linear extrapolations are shown as dotted lines. The goal is to match spatial resolution (dashed lines) with
as little cost (measured by counting FFTs) as possible. The point at which a method is estimated to achieve this
matching is indicated by a boldface vertical label.

theuxxx term in KdV is more stiff than isuxx in NLS. (Also, split-step has an extra advantage
in “pure” NLS, as pointed out above.)

All the numerical schemes that we have considered use a spectral representation in space.
Classical (i.e., low-order) finite difference or finite element schemes are far more costly.
For example, the second order explicit finite difference scheme for (KdV) by Zabusky and
Kruskal [19],

un+1
j −un−1

j = 2
k

h

(
un

j−1+un
j +un

j+1

)(
un

j−1−un
j+1

)+ k

h3

(
un

j−2−2un
j−1+2un

j+1−un
j+2

)
,

was used in pioneering the numerical computation of solitons. To reach our present
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FIG. 9. Performance for NLS. (See Fig. 8 and the text for explanation.)

“accuracy floor” of 10−12 requiresh≈ 10−6. The asymptotic stability condition ofk/h3<

2/(3
√

3)will then forcek≈ 10−18. The required computer time would become comparable
to the estimated age of the universe.

6. CONCLUSIONS

In this study we have presented an easily implemented time stepping strategy for spa-
tially spectral numerical solutions to a wide range of nonlinear wave equations. The method
combines Adams–Bashforth and Adams–Moulton methods for the nonlinear and stiff lin-
ear parts, respectively, with the novel feature that different methods are used in different
wavenumber ranges. The result combines high temporal accuracy with good stability proper-
ties. Numerical tests conducted on the KdV and NLS equations show that the new approach
is computationally more effective than other currently available methods.
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