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Boundary conditions in spectral collocation methods are typically imposed by removing some rows of
the discretized differential operator and replacing them with others that enforce the required conditions
at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree
subspace makes differentiation matrices, and operators built from them, rectangular without any row
deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The result-
ing method is both flexible and robust, and avoids ambiguities that arise when applying the classical
row deletion method outside of two-point scalar boundary-value problems. The new method is the basis
for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of
boundary-value, eigenvalue and time-dependent problems.
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1. Introduction

Chebyshev spectral collocation, or pseudospectral, methods have a well-established presence in the
numerical solution of differential equations of Boyd (2001), Canuto et al. (1988), Fornberg (1996) and
Trefethen (2000). For problems with smooth or piecewise smooth solutions, they offer rapid conver-
gence (typically exponential) in the number of degrees of freedom, and can be used in conjunction
with asymptotically fast and stable algorithms such as the FFT and barycentric interpolation formula of
Berrut & Trefethen (2004) and Higham (2004). Compared with other formulations of spectral methods,
such as Galerkin approximations, they offer convenience in the presence of variable coefficients and
nonlinearities.

The paradigm of spectral collocation for differential equations is straightforward. Functions, includ-
ing the unknown solution of a differential equation, are represented as finite vectors of their values
at certain points. Each such vector implicitly defines a global interpolant, and operations on functions
are replaced by the same operations applied to the corresponding interpolants. Because representa-
tions of fixed length N are used for every function in the formulation, linear operators are replaced by
N × N matrices, such as those that stand in for differentiation and integration operators. After all, such
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RECTANGULAR SPECTRAL COLLOCATION 109

operations are discretized, the result is an N × N algebraic system of equations, in the case of a scalar
boundary-value problem, or an N-dimensional eigenvalue problem, or system of ordinary differential
equations (ODEs) in other contexts.

When solving a two-point boundary-value problem (TPBVP), two more side conditions must be
applied to the solution. The classical solution is to remove the top and bottom rows of the discretized
operator and replace them with discrete versions of the boundary conditions. This strategy has proved
successful in a wide variety of problems. However, the precise nature of how the ODE is imposed is a
curious one, involving discretization of the residual at the N − 2 interior points of an N-point second-
kind Chebyshev grid.

The original motivation for our considering the rectangular point of view was the implementation
of differential equation solvers in Chebfun (Driscoll et al., 2014), which aims to enable fully automatic
numerical computation using Chebyshev polynomial interpolants. When one considers how to discretize
and solve as wide a variety as possible of higher-order problems, systems of equations, nonseparated
and global side conditions, and so on, it quickly becomes clear that the row replacement strategy is an
ad hoc one outside of the familiar two-point, second-order problem. For example, the imposition of
boundary conditions by row replacement in fourth-order problems requires rows other than those at the
boundary to be removed.

Various ways to address this situation have been suggested. Individual classical problems may
be solved by clever manipulation of the underlying polynomial representation (Trefethen, 2000,
Chapter 14), which is difficult to generalize. The problem can be fixed at least somewhat more gen-
erally by the fictitious point manipulations of Fornberg (2006), requiring a rewrite of algorithms and
having unknown numerical stability. A different type of approach is to soften the boundary conditions
to penalty terms (Hesthaven & Gottlieb, 1996), which introduces free parameters that may be difficult
to pin down in general.

In this work, we propose to dispense with row replacements and instead map between representa-
tions by values at different standard Chebyshev grids. In an mth-order differential operator, the map is
between Chebyshev grids of lengths N + m and N . Because we break with the tradition of row replace-
ments, the traditional preference for Chebyshev grids that include boundary points no longer seems
important, and we advise the use of first-kind points (i.e., Chebyshev–Gauss rather than Chebyshev–
Gauss–Lobatto—see equations (3.5) and (3.3), respectively), which are more convenient in some cases
and essential for our implementation of the method of lines.

In Section 2, we provide some further motivation as to why well-trodden ideas of square differen-
tiation matrices and row replacement might need revisiting, and in Section 3 we show a practical and
stable way to implement rectangular operators as an extra step following traditional collocation mani-
pulations. In Section 4, we describe how to use rectangular methods to solve boundary-value
problems of considerable generality, and in Sections 5 and 6 extend the technique to eigenvalue and
time-dependent problems. In Section 7, we discuss implementation issues and demonstrate the results
on challenging examples. Finally, in Section 8, the method is shown to have strong connections to other
forms of spectral methods.

2. The rectangularity of differentiation and integration

The basis for our algorithms is a view that differentiation and integration by square matrices is unnatural
for the polynomial interpolants that underlie spectral methods, as these operations change the degree of
a polynomial.
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110 T. A. DRISCOLL AND N. HALE

Table 1 Singular values of matrices representing successive differentiation and integration in finite
dimensions. In the first two columns are results using traditional square collocation matrices. In the
last two columns are results for rectangular forms of the operators. The last column is particularly
notable: integration followed by differentiation yields the identity operator, which is not the case for the
traditional square methods.

Q5D5 D5Q5 Q̃5,4D̃4,5 D̃5,6Q̃6,5

2.23606797749979 1.24096736459909 2.23606797749979 1.00000000000000
1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000
0.00000000000000 0.00000000000000 0.00000000000000 1.00000000000000

To illustrate the significance of this viewpoint, let DN and QN be standard Chebyshev spectral
differentiation and integration matrices, as defined in Weideman & Reddy (2000) and Greengard (1991),
respectively. (The integration matrix is chosen so that the resulting antiderivative is zero at the left
endpoint, x = −1.) The first two columns of Table 1 show the singular values for the products Q5D5

and D5Q5. Neither of these products yields an identity matrix. In the former case, two singular values
are different from unity because differentiation irrevocably destroys the constant term; the choice of
integration constant means that one singular value is zero. The results for the latter case, D5Q5, are
more disquieting. The essential problem here is that exact integration of a fourth-degree polynomial
creates a term that the five-point interpolant cannot represent accurately, causing it to be aliased to a
polynomial of degree 3 (Trefethen, 2012).1

Now suppose that D̃N−1,N is an N − 1 × N differentiation matrix that maps a representation on N
Chebyshev points (and thus underlying polynomial interpolant of degree less than N) to a representa-
tion on N − 1 points (and an interpolant of degree < N − 1). Similarly, let Q̃N+1,N be an integration
matrix that maps from N points to N + 1 points. The construction of these matrices is considered
in Section 3.3; both allow the exact expression of the underlying operators starting from the original
N-point discretization. The last two columns of Table 1 show the singular values for the 5 × 5 products
Q̃5,4D̃4,5 and D̃5,6Q̃6,5. The former is no different from that in the square case, because the lost informa-
tion is inherent to the exact process of differentiation. The latter product, however, is now the identity
matrix, as we should expect.

The inherent rectangularity of differentiation in particular is subtly acknowledged in the imposition
of boundary or other side conditions for differential equations using the row replacement or ‘boundary
bordering’ strategy (see Boyd, 2001, Section 6.4; Trefethen, 2000, p. 135). Each side constraint boils
down to an algebraic statement about polynomial interpolants. But the square representation of the
differential equation, when combined with the algebraic constraints, exceeds the number of available
degrees of freedom. The usual response is to delete some equations from the original square system—
typically, those representing the differential equation at boundary points. In the case of a second-
order TPBVP, for instance, one ODE equation is deleted at each boundary so that the total system
remains square.

1 The choice of truncation versus aliasing of the highest degree term in spectral integration is arbitrary, but in neither case is
the original information perfectly retained.
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RECTANGULAR SPECTRAL COLLOCATION 111

3. Spectral resampling matrices

3.1 The barycentric resampling matrix

A key ingredient in our suggested approach is an efficient and stable means to transform a polynomial
interpolant, as represented by a vector of its values at a set of points, to its representation as values on a
different set of points. We call this process the resampling of a polynomial interpolant. The barycentric
interpolation formula (Berrut & Trefethen, 2004) is an ideal tool for this task. Given a set of points
x = {xk}N

k=1 and the barycentric weights

wk =
N∏

l=1
l |= k

(xk − xl)
−1, k = 1, . . . , N , (3.1)

the unique polynomial pN−1 of degree < N interpolating the data {(xj, fj)}N
j=1 is given by

pN−1(y) =
∑N

k=1(wk/(y − xk))fk∑N
l=1(wl/(y − xl))

. (3.2)

Since the interpolant depends linearly on the values {fj}, the evaluation of pN−1 at a set of points
y = {yj}N−m

j=1 can be expressed as the matrix–vector multiplication

pN−1(y) = PN ,−mpN−1(x),

where PN ,−m ∈ R
N−m×N is the barycentric resampling matrix

(PN ,−m)j,k =

⎧⎪⎪⎨
⎪⎪⎩

wk

yj − xk

(
N∑

l=1

wl

yj − xl

)−1

: yj |= xk ,

1 : yj = xj.

The vector PN ,−mpN−1(x) then defines a unique polynomial interpolant pN−m−1 of the data
{(yj, pN−1(yj))}N−m

j=1 if xk and fk in (3.1) and (3.2) are replaced by yj and pN−1(yj), respectively.
Note that, for m > 0, resampling results in an irrevocable loss of information, as the new vector of

function values is shorter than the original; see Section 3.2. We call this effect downsampling. One can
also apply resampling for m < 0, or upsampling, in which case the original polynomial interpolant is
preserved, but represented on a larger set of points than is required.

Conditioning and stability properties of P follow directly from results in Higham (2004), and the
matrix PN ,−m can be easily computed in Matlab with just a few lines of code, as shown in Fig. 1.

The most widely used spectral methods for nonperiodic problems are those based on Chebyshev
polynomials and Chebyshev points (Fornberg, 1996; Trefethen, 2000; Boyd, 2001), and it is these
methods on which we focus for the remainder of this paper. (However, everything we discuss is equally
valid in the case of collocation with, say, Legendre polynomials and points.) Here, and throughout,
we use the term Chebyshev points to mean the extrema of first-kind Chebyshev polynomials TN−1 on
[−1, 1] (sometimes referred to as Chebyshev–Gauss–Lobatto or second-kind points),

xk = cos

(
( j − 1)π

N − 1

)
, k = 1, . . . , N . (3.3)
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112 T. A. DRISCOLL AND N. HALE

Fig. 1. Matlab code to generate a barycentric resampling matrix. The built-in Matlab function bsxfun applies the given
operator (minus, etc.) in an element-by-element fashion across each column or row of the input vectors.

The barycentric weights w = {wk}N
k=1 for these points are known explicitly,

wk =
⎧⎨
⎩

1
2 , k = 1,

(−1)k , k = 2, . . . , N − 1,
(−1)N/2, k = N .

(3.4)

We shall also make use of first-kind Chebyshev points, x̂ = {x̂j}N−1
j=1 (known sometimes as Chebyshev

‘roots’ or ‘nodes’), which are the roots of the Chebyshev polynomial TN−1(x). These are given
explicitly by

x̂j = cos

(
(2j − 1)π

2(N − 1)

)
, j = 1, . . . , N − 1. (3.5)

3.2 Resampling and aliasing

The phenomenon of aliasing in Chebyshev polynomials is well understood (Trefethen, 2012, Chapter 4),
and here we demonstrate its relation to the downsampling process described above. We begin by quoting
a result for second-kind discretizations.

Theorem 3.1 (Trefethen, 2012, Theorem 4.1) For any N � 1 and 0 � k � N , the following Chebyshev
polynomials take the same values on the (N + 1)-point second-kind Chebyshev grid:

Tk , T2N±k , T4N±k , T6N±k , . . . .

One can show a similar result for Chebyshev polynomials at first-kind points.

Theorem 3.2 For any N � 1 and 0 � k � N , the following Chebyshev polynomials take the same
values on the N-point first-kind Chebyshev grid:

Tk , −T2N±k , T4N±k , −T6N±k , . . . .

Proof. The proof is similar to that of Theorem 3.1, but with the observation that exp(±(2j + 1)iπ l) =
(−1)l for any integers j and l. �

Now, consider downsampling a polynomial

pN−1 =
N−1∑
k=0

akTk(x)
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RECTANGULAR SPECTRAL COLLOCATION 113

(a) (b) (c)

Fig. 2. Illustration of the aliased Chebyshev coefficients in downsampling a polynomial of degree N − 1 via interpolation at
N − m Chebyshev points of the second-kind (a), first-kind (b) and the N-point second-grid with m end-points removed (i.e., row
replacement) (c). Compare with equations (3.6) and (3.7).

to the degree N − m − 1 polynomial

pN−m−1 =
N−m−1∑

k=0

ckTk(x)

by interpolating at N − m points (where, for simplicity, we restrict m < N/2). It follows from
Theorem 3.1 and (Trefethen, 2012, Theorem 4.2) that

ck =
{

ak , k = 0, . . . , N − 2m − 2, and N − m − 1,

ak + a2(N−m)−(k+1), k = N − 2m − 1, . . . , N − m − 2,
(3.6)

if the N − m points are second-kind Chebyshev points, and from Theorem 3.2 that

ck =
{

ak , k = 0, . . . , N − 2m,

ak − a2(N−m)−(k−1), k = N − 2m + 1, . . . , N − m − 1,
(3.7)

for first-kind Chebyshev points. The aliased coefficients of equations (3.6) and (3.7) are illustrated
graphically in Fig. 2. Importantly, the zero in the (N − m, N − m + 1) entry for the first-kind point
interpolation leads to the following corollary.

Corollary 3.3 The downsampling of pN−1 =∑N−1
k=0 akTk(x) to a grid of N − 1 Chebyshev points of

the first kind is equivalent to truncating the highest-order Chebyshev coefficient aN−1.

Proof. The result follows immediately from Theorem 3.2 and Fig. 2(b), and is also evident from the
fact that the Chebyshev polynomial TN−1(x) is aliased to zero (by definition!) on the new grid. �

Conversely, we see in Fig. 2(c) that interpolating at the original N-point grid with m points at the
boundary removed, as in the traditional row replacement strategy, aliases the high-order coefficients to
all lower degree coefficients (proof omitted).

3.3 Rectangular operators

We can now use the resampling matrices from Section 3.1 to form rectangular versions of the differenti-
ation and integration operators. We begin with differentiation. The standard square Chebyshev spectral
differentiation matrix DN maps function values of a polynomial defined at {xk}N

k=1, the second-kind
Chebyshev points (3.3), to the values of its derivative on this same grid (Trefethen, 2000, Chapter 6).
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114 T. A. DRISCOLL AND N. HALE

For an mth-order derivative, (DN )m is applied.2 Left-multiplying (DN )m by the downsampling matrix
PN ,−m, with {wk}N

k=1 from (3.4) and {yj}N−m
j=1 as the first-kind Chebyshev grid (3.5), resamples the poly-

nomial values at N − m points. Hence, PN ,−m(DN )m ∈ R
(N−m)×N is a rectangular mth-order differentia-

tion matrix, mapping values of a polynomial defined at an N-point second-kind Chebyshev grid to the
values of its derivative on an N − m point first-kind Chebyshev grid.3 This particular application of
downsampling does not result in the loss of any information because the result of multiplying by (DN )m

is the discretization of a polynomial of degree < N − m, which can be represented exactly on N − m
points.

For indefinite integration, let QN be the standard Chebyshev spectral integration matrix on an
N-point second-kind grid, as defined in Greengard (1991), for example. It will not be sufficient to
upsample the result of applying QN , for the map from N points to N points cannot preserve information
about increasing the degree of the original interpolant. Instead, to properly integrate a polynomial repre-
sented on an N-point grid, we have to upsample first to N + m points, and then apply square integration
on the larger grid; (QN+m)mPN ,m ∈ R

(N+m)×N is the appropriate rectangular integration operator. Hence,
the matrix D̃5,6Q̃6,5 whose singular values are reported in Table 1 can be written as

D̃5,6Q̃6,5 = P6,−1D6Q6P5,1,

which produces correct results for all vectors representing interpolants on five points; i.e., the 5 × 5
identity matrix.

We note that using (3.6) or (3.7), one could apply PN ,−m using discrete cosine transforms, which
may be more efficient when N is large. Furthermore, one could replace the matrices in Fig. 2 with a
truncated identity to form a resampling matrix which truncates rather than aliases. However, we consider
the idea of downsampling to the interpolant on a smaller Chebyshev grid to be the easiest to motivate
conceptually, and a detailed comparison is beyond the scope of this paper. We also note that it is possible
to form the rectangular differentiation matrices PN ,−m(DN )m directly (Xu & Hale, 2014), but our aim
here is to demonstrate that the collocation matrices representing more general operators can be easily
adapted by premultiplying by PN ,−m, as discussed in the next section.

4. Rectangular collocation for boundary-value problems

In this section, we show how resampling and rectangular differentiation can be used to solve boundary-
value problems. For scalar problems, the process is clear and unambiguous, unlike for the boundary
bordering method. For systems of equations the process is a little more complicated, but the ambiguity
is still removed. We begin with the simplest cases and then add complexity.

4.1 Linear, scalar problems

4.1.1 First-order An initial value problem of the form

a(x)u′(x) + b(x)u(x) = f (x), (4.1)

u(−1) = c (4.2)

2 In practice, higher-order differentiation matrices may be constructed from explicit formulae rather than by taking successive
powers of DN (Weideman & Reddy, 2000).

3 One might choose other grids for y ∈ R
N−m, such as another second-kind grid, but in Section 6 we will point out a major

advantage of first-kind points for the discretization of a partial differential equation (PDE).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/1/108/2363563 by U
niversity of D

elaw
are Library user on 07 June 2019



RECTANGULAR SPECTRAL COLLOCATION 115

can be discretized in the Chebyshev collocation method as

Au := [diag(a)DN+1 + diag(b)]u = f, (4.3)

Bu := [1 0 0 · · · 0]u = c. (4.4)

We use boldface letters to indicate a vector obtained by discretizing at N + 1 Chebyshev nodes; thus,
x = [x1, . . . , xN+1]T, a = [a(x1), . . . , a(xN+1)]T, etc. The reason for using the notation of N + 1 rather
than N points for u is to collocate the ODE at N points, which will become important in Section 4.4.

The standard row replacement or boundary bordering strategy is to solve the (N + 1) × (N + 1)

system [
B

RN+1,−1A

]
u =

[
c

RN+1,−1f (x)

]
, (4.5)

where, in this instance, one makes the particular choice of RN+1,−1 as

RN+1,−1 =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 · · · 0 1

⎤
⎥⎥⎥⎦ , (4.6)

i.e., the N × (N + 1) matrix that deletes the first row of any right multiplicand. It is arguably natural to
choose this row, which corresponds to collocation of the ODE system at the left boundary, in order to
replace it with a side condition based on the known function value at the same location. Typically, the
trivial algebra of simply replacing u(0) by c is done before machine computation, reducing the system
to a square one of size N .

In our formulation, the approach is to solve equation (4.5) with resampling rather than row deletion;
that is, to let RN+1,−1 = PN+1,−1. Note that while the final linear algebraic system is again (N + 1) ×
(N + 1), the enforcement of the ODE (4.1) is at a different, smaller set of Chebyshev nodes than the
set on which the solution u is defined. This perhaps stretches the meaning of the term ‘collocation’, but
a representation of the ODE on a set of nodes native to the entire interval should be more appropriate
than an approximation that deletes one node (or more) from a complete set.

A more concrete advantage of the rectangular approach emerges when we consider auxiliary con-
ditions to the problem different from (4.2) in the row replacement strategy. If u(1) is given rather than
u(−1), it is natural to let RN+1,−1 be derived from the identity with its last row deleted, rather than (4.6).
But matters are less clear with the nonseparable boundary condition

u(−1) + u(1) = 0, (4.7)

or even a global condition, like ∫ 1

−1
u(x) dx = 0. (4.8)

These conditions are straightforward to discretize: one only has to replace the matrix B in (4.4) with

B = [1 0 · · · 0 1]

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/1/108/2363563 by U
niversity of D

elaw
are Library user on 07 June 2019



116 T. A. DRISCOLL AND N. HALE

for (4.7), and with a vector of Clenshaw–Curtis quadrature weights in the case of (4.8). However, it now
becomes unclear which row in A should be replaced. This ambiguity is removed when resampling is
used; no rows are replaced!

To understand what effect the row deletion choice may have, it is illustrative to consider the trivial
example with A = DN+1, i.e., the antiderivative problem u′ = f . Dropping the subscript for the moment,
it is well known that D obeys the antisymmetry property D = −JDJ , where J is a flipping matrix
obtained by reversing the columns (or rows) of an identity. Thus, we can relate deletion of the first
row to deletion of the last row via⎡

⎢⎣
eT

2
...

eT
N+1

⎤
⎥⎦D = −

⎡
⎢⎣

eT
2
...

eT
N+1

⎤
⎥⎦ JDN J = −

⎡
⎢⎣

eT
N
...

eT
1

⎤
⎥⎦DN J

= −

⎛
⎜⎝J

⎡
⎢⎣

eT
2
...

eT
N+1

⎤
⎥⎦
⎞
⎟⎠DJ

= J

⎛
⎜⎝−

⎡
⎢⎣

eT
N
...

eT
1

⎤
⎥⎦D

⎞
⎟⎠ J .

Hence, if we augment the problem with a boundary row such as in (4.5), the two types of discretization
are related via a similarity transformation with the reflection matrix⎡

⎢⎢⎣
1 0 · · · 0
0
0 J
0

⎤
⎥⎥⎦ ,

and the eigenvalues of the two deletion cases are negatives of one another.4

In contrast, the rectangular projection strategy uses RN+1,−1 = PN+1,−1. It is easy to see the symmetry
relation PN+1,−1 = JPN+1,−1J . Continuing the antiderivative example without subscripts on D and P, we
find that PD = (JPJ)(−JDJ) = −J(PD)J , so that the eigenvalues of the matrix in (4.5) are symmetric
with respect to the origin. Figure 3 compares the eigenvalues of row replacements with resampling for
the antiderivative operator A = DN+1 with side condition (4.7). (For details on how the side condition is
incorporated into the eigenvalue computation, see Section 5.) Only in the resampling discretization do
the eigenvalues have the same symmetry as those of the exact operator.

4.1.2 Higher-order problems Now, consider a linear problem of order m,

am(x)u(m)(x) + · · · + a1(x)u
′(x) + a0(x)u(x) = f (x),

�i(u, . . . , u(m−1)) = ci, i = 1, . . . , m,
(4.9)

4 This relationship may be immaterial for the boundary-value problem, but it can be decisive in the stability of a method of
lines discretization of a PDE.
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RECTANGULAR SPECTRAL COLLOCATION 117

Fig. 3. Eigenvalues of discretizations on N = 40 points of the operator u′ subject to u(1) + u(−1) = 0. On the left, the results
using deletion of the first row (crosses) or last row (circles) to make room for the side condition. On the right, the results using
resampling. Only in the resampling case are the eigenvalues purely imaginary, as for the exact operator.

where each �i is a linear functional. Again, for reasons important in Section 4.4, we will discretize the
solution u at N + m points.

In the commonplace case with m = 2 and one condition at each boundary, the obvious strategy for
row replacement is to replace the first and last row of the collocation matrix. For m > 2, though, while
it is straightforward to delete some m rows of an identity to get an analogue of (4.6), there is little
clarity in whether deleting multiple rows from either the top or bottom is a sound idea. In fact, one finds
various alternative strategies in the literature for particular problems (see, for example, Trefethen (2000,
Chapter 14)).

The rectangular differentiation method, in contrast, proceeds unambiguously as before. The linear
equations to be solved can be expressed as[

B
PN+m,−mA

]
u =

[
c

PN+m,−mf (x)

]
,

where A is the standard (square) collocation representation of the operator in equation (4.9), the ith row
of B ∈ C

m,N+m is an (N + m)-point discretization of the functional �i, and c is an m-vector of the cis.

4.2 Nonlinear problems

Nonlinearity in a scalar boundary-value problem introduces no significant complications for either row
replacement or rectangular formulations. Suppose

h(u) = f (x), −1 < x < 1, (4.10)

gi(u) = ci, i = 1, . . . , m, (4.11)

where h is a nonlinear operator of differential order m, and each gi is a nonlinear functional of differential
order up to m − 1. We replace u(x) by its (N + m)-vector discretization u, and each derivative u(k)(x)
by Dk

N+mu, in order to create an N-vector h(u).
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118 T. A. DRISCOLL AND N. HALE

The natural formulation of (4.10) is the nonlinear algebraic system

RN+m,−m(h(u) − f) = 0,

where RN+m,−m is either a truncated identity for row replacement, as in (4.6), or a resampling matrix
PN+m,−m. Perturbing the unknown to u + δ and linearizing, as is the basis of Newton-like solvers, one
obtains

RN+m,−mh′(u)δ = RN+m,−m[f − h(u)], (4.12)

where h′ is a square N + m Jacobian matrix. For example, in u′′ + uu′ = 1, we have h(u) = u′′ + uu′ and
h(u) = D2

N+mu + u ◦ (DN+mu), where ◦ is the Hadamard (elementwise) product. Then, it is straight-
forward to show that

h′(u) = D2
N+m + diag(DN+mu) + diag(u)DN+m, (4.13)

where diag() creates a diagonal matrix using the entries of the given vector along the main diagonal.
Equation (4.12) is identical to the rectangular discretization of the linear ODE

h′(u)δ(x) = f (x) − h(u),

where h′ is the Fréchet derivative of h. Continuing the example above, we find h′(u)δ(x) =
δ′′(x) + u′(x)δ(x)u(x)δ′(x), whose N + m point discretization for δ again leads to the matrix of (4.13).
Thus, the transformations of linearization and discretization are commutative at fixed N + m.

The boundary conditions (4.11) are handled just as in the linear case. They are discretized on N + m
points and do not need to be resampled (since they result in scalars, not functions). Each boundary
condition can be linearized, if necessary, in order to yield additional rows to be adjoined to (4.12),
leading to a square algebraic system. Linear boundary conditions are imposed correctly on the solution
after a single linearization step, whereas nonlinear conditions are satisfied only in the iterative limit of
the Newton solver.

4.3 Piecewise smooth problems

While spectral methods converge geometrically fast when the underlying solution to an ODE is analytic
in some neighbourhood of its domain, any discontinuities in the solution or one of its derivatives reduce
the rate to algebraic. However, if the singularities are isolated and their location is known, one can patch
together piecewise Chebyshev interpolants to maintain geometric convergence (Driscoll & Fornberg,
1998). Furthermore, it can sometimes be advantageous to use such a piecewise discretization (i.e.,
domain decomposition) even when the solution is smooth (Driscoll & Weideman, 2014).

Consider, as an example,

a(x)u′(x) + b(x)u(x) = |x|,
u(−1) = c.

With some fairly weak assumptions on a and b, it is evident that u will in general have a discontinu-
ity in its second derivative at x = 0, and therefore a global Chebyshev interpolant of u will converge
only algebraically. Instead, let us discretize the solution on two scaled and shifted (N + 1)-point
Chebyshev grids: xL on [−1, 0] and xR on [0, 1]. Using the appropriately scaled differentiation matrices
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RECTANGULAR SPECTRAL COLLOCATION 119

DL = DR = 2DN+1, we can discretize the ODE by

ALuL = [diag(a(xL))DL + diag(b(xL))]uL = f (xL) = fL,

ARuR = [diag(a(xR))DR + diag(b(xR))]uR = f (xR) = fR,

and so arrive at the block system [
AL

AR

] [
uL

uR

]
=
[

fL

fR

]
.

Since both AL and AR are first-order operators, we reduce the row size of each by one and add the
boundary condition at x = −1 as in equation (4.4) to find the (2N + 1) × (2N + 2) system⎡

⎣ BL

RN+1,−1AL

RN+1,−1AR

⎤
⎦[uL

uR

]
=
⎡
⎣ c

RN+1,−1fL

RN+1,−1fR

⎤
⎦ .

As before, the choice of row replacement versus resampling boils down to the definition of RN+1,−1.
The final constraint required to square up the system comes from enforcing continuity of u at x = 0.
Since both xL and xR contain 0, this can be achieved by adding the continuity conditions row

C = [eT
N+1 − eT

1 ] = [0 · · · 0 1 − 1 0 · · · 0],

so that ⎡
⎢⎢⎣

BL

eT
N+1 −eT

1
RN+1,−1AL

RN+1,−1AR

⎤
⎥⎥⎦
[

uL

uR

]
=

⎡
⎢⎢⎣

c
0

RN+1,−1fL

RN+1,−1fR

⎤
⎥⎥⎦ .

Note that the differential equation implicitly enforces continuity of u′(x).
More generally, if A were an mth-order ODE, once the m given boundary conditions have been

applied to the projected matrix, the system is still (2N + m) × (2N + 2m). Therefore, to square it up, we
enforce continuity of the zeroth to (m − 1)th derivatives of the solution, in addition to the m boundary
conditions. For example, if m = 3, then

C =

⎡
⎢⎣

eT
N+1 −eT

1

eT
N+1DL −eT

1 DR

eT
N+1D2

L −eT
1 D2

R

⎤
⎥⎦ .

Furthermore, this approach can be used to enforce desired jumps in the derivatives, rather than continu-
ity, by specifying a nonzero in the appropriate row of the right-hand side vector.

4.4 Systems of equations

As with scalar equations, it suffices to restrict our attention to linear systems of equations, as nonlinear
systems will be solved by successive linear approximations. Consider first the first-order system

A1(x)u
′(x) + A0(x)u(x) = f (x), x ∈ [−1, 1],

Lu = c,
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120 T. A. DRISCOLL AND N. HALE

where u(x), f (x), c ∈ C
d , Ak(x) ∈ C

d×d and L is a functional mapping u(x) into C
d . We assume the

rows of L to be linearly independent and that the system is without singular points (i.e., that A1(x) is
nonsingular at every x ∈ [−1, 1]). As in the scalar case, each component function of u(x) is collocated
at N + 1 points. With the understanding that, for any vector-valued function w(x),

w =

⎡
⎢⎢⎢⎣

w(x1)

w(x2)
...

w(xN+1)

⎤
⎥⎥⎥⎦ ∈ C

(N+1)d ,

and

Ak =

⎡
⎢⎣

diag(a(k)
11 ) · · · diag(a(k)

1d )
...

...
diag(a(k)

d1 ) · · · diag(a(k)
dd )

⎤
⎥⎦ ∈ C

(N+1)d×(N+1)d ,

for k = 0, 1, the discretization of the ODE is compactly written as

A1(Id ⊗ DN+1)u + A0u = f. (4.14)

Here, Id is the d × d identity matrix, and ⊗ is the Kronecker product.
In order to reduce dimensions so that d boundary conditions may be imposed, we reduce the dimen-

sion of each block row of the system by one; that is, we left-multiply (4.14) by (Id ⊗ RN+1,−1). The
discrete form of the auxiliary condition Lu = c is then prepended to make a square (N + 1)d × (N + 1)d
linear system to solve for u.

Now, consider the mth-order system Au = Am(x)u(m)(x) + · · · + A0(x)u(x) = f (x), with Am(x) non-
singular at every point. One could use the standard transformation of introducing extra variables to
represent the derivatives u′

j, . . . , u
(mj)

j , j = 1, . . . , d, and rewrite the problem as a first-order system in md
variables. However, to avoid an unnecessarily large system of equations, we prefer a direct discretization
of the original high-order equation.

For convenience, denote by mj the maximum derivative of uj (the jth component of u) appearing in A;
that is, at least one element in the jth column of Amj(x) is nontrivial. A well-posed problem will specify

m =∑d
j=1 mj independent boundary/side conditions. If we apply the principle that, in each row of the

system, the output dimension from each column should be the same, then we arrive at the following
approach: ⎡

⎢⎣
PN+m1,−m1A11 . . . PN+md ,−md A1d

...
...

PN+m1,−m1Ad1 . . . PN+md ,−md Add

⎤
⎥⎦
⎡
⎢⎣

u1
...

ud

⎤
⎥⎦=

⎡
⎢⎣

f1
...

fd

⎤
⎥⎦ ,

where, for each j = 1, . . . , d, variable uj and all the Ai,j are discretized at (N + mj) second-kind points,
while fj is discretized at N Chebyshev points of the first-kind. The method can be viewed as discretizing
each column of A using N + mj points in the usual square fashion before projecting down to size N .
The resulting matrix in (4.14) is of size N × (N + m) and can be squared up with the m supplemental
conditions before solving for u.
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RECTANGULAR SPECTRAL COLLOCATION 121

5. Rectangular collocation for eigenvalue ODE problems

Resampling can also be used in ODE eigenvalue problems having the generalized form

am(x)u(m)(x) + · · · + a1(x)u
′(x) + a0(x)u(x)

= λ[bm(x)u(m)(x) + · · · + b1(x)u
′(x) + b0(x)u(x)], (5.1)

�i(u, . . . , u(m−1)) = 0, i = 1, . . . , m, (5.2)

where each �i is a linear functional. For simplicity, we assume that the coefficient functions are smooth.
Extensions to the system and piecewise smooth cases follow from the same considerations as for
boundary-value problems.

We again use standard collocation to define the matrices

A = diag(am)Dm
N+m + · · · + diag(a1)DN+m + diag(a0),

B = diag(bm)Dm
N+m + · · · + diag(b1)DN+m + diag(b0).

(5.3)

We also use standard (N + m)-point discretization to define an m × (N + m) matrix L whose ith row is
defined by

eT
i Lu = �i(u, DN+mu, . . . , Dm

N+mu) (5.4)

for all u ∈ C
N+m.

The row replacement strategy, as with boundary-value problems, is clearest in the case of a
second-order, two-point problem. We will apply Schur complementation in order to eliminate degrees
of freedom using the auxiliary conditions. For simplicity, suppose we rearrange and partition u, L,
A and B so that

u =
[

ub

ui

]
, ub =

[
u1

uN+2

]
,

[Li Lb]u = 0, A =
[

Abb Abi

Aib Aii

]
, B =

[
Bbb Bbi

Bib Bii

]
.

We apply Lu = 0 in order to solve for ub:

ub = −L−1
b Liui.

Now, disregarding the b-rows of the system, we arrive at the N × N generalized eigensystem

[Aib Aii]

[−L−1
b Li

IN

]
ui = λ[Bib Bii]

[−L−1
b Li

IN

]
ui. (5.5)

The system (5.5) has a notable simplification in the important case where B = IN+2; i.e., when the
right-hand side of (5.1) is just λu(x) and the eigenvalue problem is standard, not generalized. In this
case, Bib = 0 and Bii = IN , so the right-hand side of (5.5) is simply a truncated identity. That is, the
discrete eigenvalue problem is a generalized (rather than standard) one only when the original ODE
eigenvalue problem is also a generalized one.
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122 T. A. DRISCOLL AND N. HALE

The resampling rectangular discretization of (5.1)–(5.2), on the other hand, is simply

[
L

PN+m,−mA

]
u = λ

[
0

PN+m,−mB

]
u.

This result takes the form of an (N + m) × (N + m) generalized eigenvalue problem, even when the
original problem is not generalized. The resampling formulation therefore requires the QZ algorithm
(Golub & Van Loan, 2012) rather than the QR algorithm in all cases.

As we saw in Fig. 3, the row replacement method does not always produce eigenvalues that have
the same qualitative properties, such as symmetries, as the original operator. In addition, the Schur
complementation technique is less clear, nonunique, and of unknown numerical stability in problems
with order greater than two or atypical auxiliary conditions. We feel that the simplicity and unity of
the resampling strategy is worth the extra computational effort in the context of a general-purpose
algorithm.

6. Rectangular collocation for time-dependent PDEs

6.1 Linear, constant coefficient PDE

We begin with the important special case of a linear, constant coefficient problem:

∂u

∂t
= amu(m)(x, t) + · · · + a1u′(x, t) + a0u(x, t), t > 0,

�i(u, . . . , u(m−1)) = 0, i = 1, . . . , m,

u(0) given,

where we continue to use superscript notation for derivatives with respect to x, and the �i are constant
linear functionals. Extensions to piecewise solutions and to systems are as described in Section 4, but
the extension to nonlinearity is given differently below.

As with (5.3)–(5.4), we use powers of the spectral differentiation matrix to define the discrete linear
equations

du
dt

= Au, (6.1)

Lu = 0, (6.2)

where A ∈ C
(N+m)×(N+m) and L ∈ C

m×(N+m). Because it is a linear, constant coefficient ODE, we want
to express the solution to (6.1) using a matrix exponential. However, the constraints (6.2) are a compli-
cating factor. Suppose we define ũ = RN ,−mu as reduced variables resulting from either row removal or
resampling. We can recover u from ũ by joining this definition with the side constraints and solving:

[
L

RN+m,−m

]
u =

[
0
IN

]
ũ

⇒ u = Eũ, E =
[

L
RN+m,−m

]−1 [
0
IN

]
. (6.3)
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RECTANGULAR SPECTRAL COLLOCATION 123

Multiplying both sides of (6.1) on the left by RN ,−m, we get the (N − m) × (N − m) linear system

dũ
dt

= RN+m,−mAu = RN+m,−mAEũ ⇒ ũ(t) = exp(tRN+m,−mAE)ũ(0).

Combining this with (6.3) and the definition of ũ, we arrive at

u(t) = E exp(tRN+m,−mAE)RN+m,−mu(0).

As we saw with eigenvalues, row removal can lead to a modest algebraic speedup compared with
resampling. When RN+m,−m is a truncated identity, then all but the top m rows of (6.3) are trivial, and
u can be recovered from ũ by solving an m × m system through complementation. However, we recall
from Fig. 3 that the choice of deleted rows can have effects on the eigenvalues that completely change
the qualitative character of the solution. In addition, the cost of computing E (or its action on a vector)
is typically far less than computing the matrix exponential.

6.2 General PDEs and DAEs

For more general PDEs,

∂u

∂t
= F(x, t, u),

g(t, u) = 0,
(6.4)

where F is the mth-order differential in x and g ∈ C
m, a method of lines approach is useful. If as usual

we denote an (N + m)-point discretization using boldface letters, the simplest expression of (6.4) is[
0

RN+m,−m

]
du
dt

=
[

g(t, u)

RN+m,−mF(x, t, u)

]
. (6.5)

Equation (6.5) is a differential–algebraic equation (DAE). As such, it requires a stiff integrator.
Traditionally, in row replacement where RN+m,−m is a truncated identity, one can again appeal to
complementation and perform algebra to make (6.5) an ODE which might be treated by an explicit
integrator. For semiexplicit problems, this algebra is essentially performed by a DAE solver automat-
ically. Given that Chebyshev differential operators of order m on N points have eigenvalues of size
O(N2m) (Weideman & Trefethen, 1988), we do not regard the requirement of a stiff solver as a severe
imposition on the great majority of problems. In exchange, we get a simple and robust formulation for
a very wide variety of PDEs and auxiliary conditions.

We do point out one important caution when using resampling via RN ,−m = PN ,−m: the points used
to define the range of PN ,−m must not include points at which conditions are imposed via g—typically,
boundary points. Doing so creates two potentially different conditions to satisfy at a single point, and
since surprisingly many initial-boundary-value problems are supplied with initial conditions that are
incompatible with the boundaries (Flyer & Fornberg, 2003), they will raise the DAE index and usually
cause the solver to fail. This observation is a major part of our motivation for using first-kind Chebyshev
points throughout the collocation process, as they avoid boundaries altogether.

In Section 7.5, we demonstrate this approach for the KdV-like Rosenau equation, which has a mixed
time–space derivative term, uxxxxt.
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124 T. A. DRISCOLL AND N. HALE

7. Examples

In this section, we demonstrate how rectangular spectral collocation can be used in solving various
problems of the types discussed in Sections 4–6.

Chebfun is an open-source software system for numerical computing with functions (Driscoll et al.,
2014). Its mathematical basis is piecewise polynomial interpolation with Chebyshev polynomials, and
in particular the software has extensive capabilities for dealing with linear and nonlinear differential
and integral operators based upon Chebyshev spectral methods. The use of rectangular collocation as a
means to enforce boundary conditions in BVPs, ODE eigenvalue problems, and PDEs has been present
in the system since the release of version 4.2 in March 2012 (Driscoll et al., 2014), and a large suite of
tests and examples has consistently been used to validate the correctness of the approach.

Below, we give some ‘manual’ implementations, in which we construct the required matrices step
by step, and also examples of Chebfun syntax that automates such computations. In the automated com-
putations, Chebfun uses automatic differentiation to linearize nonlinear operators and apply a damped
Newton iteration, and adapts the discretization size in linear problems to attempt to fully resolve the
solution to high accuracy. Rather than discuss these features in detail here, we refer the reader to
Birkisson & Driscoll (2012) and Driscoll et al. (2008), respectively. All the examples in this section
use Chebfun version 5.1.0.

7.1 Piecewise smooth BVP

As our first example, we consider a second-order ODE with a discontinuous coefficient in the reaction
term,

0.001u′′ + sgn(x)u = 1, x ∈ [−1, 1],

u(−1) = 0,∫ 1

−1
u(x) dx = 0.

(7.1)

To solve manually, we proceed as described in Section 4.3 and discretize with smooth interpolants on
[−1, 0] and [0, 1] coupled together by continuity conditions at x = 0. The first step is to define differen-
tiation matrices and relevant grids for the solution and the ODE.

e = 0.001; N = 42; % Choose eps and N.
% Square, scaled differentiation matrix for 2nd-kind points:
D = diffmat(N+2); D = 2*D;
D2 = D^2; % 2nd-order derivative.
% Nodes for solution, plus quadrature and barycentric weights:
[xFunc, CCW, BaryW] = chebpts(N+2, [0 1], 2);
xDE = chebpts(N, [0, 1], 1); % 1st-kind grid for ODE.

The resampling matrix is computed in a single line:

P = barymat(xDE, xFunc, BaryW); % Resampling matrix.

Next, we create the system matrix and resample it down to 2N total points.

I = eye(N+2); % Identity operator.
A = blkdiag(e*D2 - I, e*D2 + I); % Square operator.
PA = blkdiag(P, P) * A; % Rectangular operator.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/36/1/108/2363563 by U
niversity of D

elaw
are Library user on 07 June 2019



RECTANGULAR SPECTRAL COLLOCATION 125

Fig. 4. Solutions of reaction–diffusion equation (7.1) (left) and Blasius equation (7.3) (right).

Then, we discretize the boundary conditions at the function’s nodes:

z = zeros(1, N+2);
B = [ 1 z(2:N+2), z ; % Dirichlet constraint.

CCW , CCW ]; % Integral constraint.

The Clenshaw–Curtis quadrature weights in CCW were computed above with the grid xFunc. To com-
plete the operator, we append C1 continuity conditions at the interface.

B = [ B ;
z(1:N+1) 1, -1 z(2:N+2) ; % Continuity of u at x = 0.
D(N+2,:) , -D(1,:) ]; % Continuity of u' at x = 0.

M = [ B ; PA ]; % Complete system matrix.

The right-hand side of the linear system starts out with a 1 for the Dirichlet condition row, followed by
three zeros, and then the discretization of the ODE forcing term (here, identically 1) at the ODE grid.

rhs = [ -1 ; 0 ; 0 ; 0 ; % BCs & continuity constraints.
ones(2*N, 1) ]; % RHS of ODE.

u = M \ rhs; % Solve on the function grid.
xSol = chebpts([N+2, N+2], [-1, 0, 1]);
plot(xSol, u, '.b'); % Plot the solution.

The solution is shown in Fig. 4 (left). In Chebfun syntax, the process can be applied fully automatically
as follows:

A = chebop( @(x,u) e*diff(u,2) + sign(x).*u, [-1, 1] );
A.bc = @(x,u) [ u(-1) + 1 ; sum(u) ]; % Append boundary conditions.
u = A \ 1; % Solve.
hold on, plot(u, 'k'), hold off % Plot the solution.
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7.2 Nonlinear system

As our next example, we consider the Blasius equation on a truncated domain:

f ′′′(x) + 1
2 f (x)f ′′(x) = 0, x ∈ [0, 10],

f (0) = f ′(0) = 0, f ′(10) = 1.
(7.2)

Although it is not necessary to do so, we rewrite (7.2) as a system of two equations in order to demon-
strate the method of Section 4.4:

u′′ − v = 0,

v′ + 1
2 uv = 0,

u(0) = u′(0) = 0, u′(10) = 1.

(7.3)

After linearization, we get successive systems for corrections ũ and ṽ to current estimates uc and vc,
respectively, in the form

ũ′′ − ṽ = r1,

ṽ′ + 1
2 (ucṽ + ũvc) = r2,

ũ(0) = ũ′(0) = ũ′(10) = 0.

Here, r1 and r2 represent residuals in the ODEs when inserting the current approximations uc and vc.
We have assumed that uc satisfies the boundary conditions (in any event, one Newton step will correct
them perfectly due to their linearity).

Since ũ now appears with a second derivative term, and ṽ only with a first, we discretize them
on N + 2 and N + 1 points, respectively. The rectangular block operator before appending boundary
conditions is [

PN+2,−2 D2
N+2 −PN+1,−1

1
2 PN+2,−2V PN+1,−1(DN+1 + 1

2 U)

]
, (7.4)

where
V = PN+1,1 diag(vc), U = PN+2,−1 diag(uc). (7.5)

The resampling in (7.5) is needed to translate between the different grids used to represent the two
functions. The matrix in (7.4) has dimension 2N × (2N + 3); hence, appending three boundary rows
will produce a square matrix.

In Chebfun, the entire process (including adaptive search for N and linearization) is applied through
the following commands.

% Define the nonlinear operator on the interval [0 10]:
N = chebop( @(x,u,v) [ diff(u,2) - v ; diff(v) + .5*u.*v ], [0, 10] );
N.lbc = @(u,v) [ u ; diff(u) ]; % Add left boundary conditions.
N.rbc = @(u,v) diff(u) - 1; % Add right boundary condition.
uv = N \ 0; % Solve with backslash.
plot(uv{1}, '.-k') % Plot the solution.

The result is shown in Fig. 4 (right) and is accurate to around 10 digits.
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7.3 ODE eigenvalues

The harmonic, rotationally symmetric vertical displacement of a perfectly elastic circular drum whose
density is ρ(r) is described by the Bessel equation

u′′(r) + r−1u′(r) = −ω2ρ(r)u(r), u′(0) = 0, u(1) = 0,

where ω is the temporal frequency of the vibration. The problem is to be solved for 0 < r < 1, which
makes the 1/r term problematic, so we multiply through by r:

ru′′(r) + u′(r) = −ω2rρ(r)u(r), u′(0) = 0, u(1) = 0. (7.6)

Equation (7.6) is in the form of a generalized eigenproblem Au = λBu. For the case of a uniform material
with ρ ≡ 1, its expression in Chebfun is

A = chebop( @(r,u) r.*diff(u,2) + diff(u), [0, 1], 'neumann', 0 );
B = chebop( @(r,u) -r.*u, [0, 1] );

The relevant command is eigs, which, as for large matrices, finds a requested number of eigenvalues
closest to a given value (or those most easily resolved, if no reference point is given).

[V, D] = eigs(A, B, 6, 0); % Find 6 eigenvalues closest to zero.
omega = sqrt(diag(D)).

The values of ω should be roots of the Bessel function J0:

>> besselj(0, omega)
ans =

-1.4041e-10
7.6527e-11
-8.7578e-12
9.1255e-13
-4.3800e-14
-1.0307e-13

These results are well in line with the default error tolerance of 10−10 for ODE problems in Chebfun. We
can visualize the first four eigenfunctions on the disc using Chebfun2 (Townsend & Trefethen, 2013),
as shown in Fig. 5.

x = chebfun2( @(r,theta) r.*cos(theta), [0, 1, -pi, pi] );
y = chebfun2( @(r,theta) r.*sin(theta), [0, 1, -pi, pi] );
for k = 1:4

v = chebfun2( @(r,theta) V{k}(r), [0, 1, -pi, pi] );
v = v/sign(v(0,0)); % Normalize.
subplot(1, 4, k), surf(x, y, v), axis equal square off

end
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Fig. 5. First four axisymmetric vibration modes for a circular drum. See the text in Section 7.3 for related code.

7.4 Operator exponential

Consider the Black–Scholes evolution equation for a European call option,

vt(s, t) = σ 2

2
s2vss(s, t) + rsv(s, t)s − rv, s > 0, t > 0,

v(0, t) = 0, v(t, s) → s as s → ∞,

(7.7)

where v is the value of the option as a function of the price s of the underlying security. Suppose the
option has a strike price of 50 at the initial time (in our time-reversed formulation), so that v(s, 0) =
v0 = max(s − 50, 0). We will truncate the domain at s = Σ and let v′(t, Σ) = 1 be the right boundary
condition in place of the asymptotic condition.

d = [0, 500]; % Choose a large interval to approximate infinity.
s = chebfun('s', d); % Linear chebfun of stock price.
v0 = max(0, s - 50); % Value at t = 0.

The system (7.7) has the form vt = Av, Bv = q.

sigma = .45; r = 0.03; % std. dev. and risk-free interest rate
A = chebop(@(s,v) sigma^2/2*s.^2.*diff(v,2) + r*S.*diff(v) - r*v, d);
A.lbc = 0; A.rbc = @(v) diff(v) - 1; % Boundary conditions.

The boundary conditions are not homogeneous, whereas the method of Section 6.1 requires
homogeneous conditions. However, there is a general method to avoid this limitation. Suppose u(s)
satisfies Au = 0, Bu = q. Then, (v − u)t = vt = Av = A(v − u), and B(u − v) = 0. Hence, one can prop-
agate w = v − u with homogeneous conditions in combination with the solution of a boundary-value
problem for u.

u = A\0; % u satisfies u_t = A*u = 0, B*u = q.
w0 = v0 - u; % Adjusted variable - satisfies w_t = A*w, B*w = 0.
A.rbc = 0; % Homogenous BCs.

We can now evaluate at any time directly (not by marching) using the operator exponential imple-
mented by expm. The results are shown in Fig. 6.

plot(v0, [40, 60], 'LineWidth', 2), hold on
% Advance in time to t = 0.1, 0.2, ..., 0.5 using EXPM():
for t = 0.1:0.1:0.5

w = expm(A, t, w0);
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Fig. 6. Solutions of Black–Scholes equation (7.7) (left) and Rosenau equation (7.8) (right).

v = w + u;
plot(v, [40, 60], 'k')

end

The reported value of the option at a stock price of 55, for instance, is found to be
w(55) + u(55), which is 9.8499. Because the initial condition for w is piecewise smooth, the solu-
tion found by Chebfun at all times will also be piecewise smooth; at t = 0.5 in our example, it is rep-
resented by polynomials of degrees 28 and 43 to the left and right of s = 50, respectively. However,
computationally the solution is very smooth, with a numerical jump of < 10−8 in the second derivative
at the interface.

7.5 Nonlinear PDE

As our final example, we consider the KdV-like 1D Rosenau equation

ut + uxxxxt = −(u + u2)x, x ∈ [−8, 8], t > 0,

u(±1, t) = uxx(±1, t) = 0, u(x, 0) = sech(x).
(7.8)

We pose this problem as a differential–algebraic equation, Mut = f (t, u), with ‘mass operator’ M =
(I + (∂x)4). We begin by setting up a discretization of this operator to a mass matrix.

d = [-8, 8]; N = 80; % Domain and N.
M = chebop( @(u) u + diff(u, 4)/2, d ); % Mass operator.
massmat = [ matrix(M, N) ; zeros(4, N+4) ]; % Mass matrix.

The last four rows are reserved for the boundary conditions, 0 = 0 · ut = Bu. The Chebfun command
matrix detects that M is a fourth-order operator and returns an N × (N + 4) matrix accordingly.

Next we need to provide a discretization of the nonlinear term f (t, u). This is less straightforward,
because it has only a first-order derivative and matrix would produce it at size N × (N + 1). We will
cheat a bit by adding a tiny fourth-order term to fool matrix into doing the right thing for our context.

% N x (N+4) rectangular differentiation matrix:
D = matrix( chebop( @(u) diff(u) + eps*diff(u, 4), d ), N );
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Now, we form the 4 × (N + 4) boundary condition matrix B.

I = eye(N+4); % Identity.
D2 = diffmat(N+4, 2)/64; % 2nd derivative.
B = [ I([1,N+4],:) ; D2([1,N+4],:) ]; % BCs.

Finally, we are ready to define a function that computes ut:

function F = timederiv(t,u)
u_t = -D * (u + u.^2); % Time derivative.
F = [ u_t ; B*u ]; % Append BCs.

end

In order to solve the PDE, we just define an initial condition and call the DAE solver, ode15s. We
convert the solution to a 2D chebfun for plotting the result (see Fig. 6).

xFunc = chebpts(N+4, d, 2); % Chebyshev grid.
u0 = sech(xFunc); % Initial condition.
t = chebpts(400, [0, 200]); % Output times.
odeopt = odeset('mass', massmat, 'masssing', 'yes');
[t, u] = ode15s(timederiv, t, u0, odeopt); % Solve.
U = chebfun2(u, [d, t(1), t(400)]); plot(U); % Plot.

The simulation takes less than half a second to run on a laptop.

8. Connections with other methods

We do not claim that the problems solved by our approach cannot be solved by any other collocation
formulation by experts. Rather, our intent was to describe a systematic approach that can be imple-
mented reliably in a fully automated fashion even for unusual problem types. Unlike many descriptions
in the literature, our approach eliminates all decisions and manual or specialized manipulations in the
discretization process.

The key concept behind the rectangular collocation approach we describe is to discretize each
equation, rather than each solution function, at the same set of Chebyshev nodes. Due to the natural
rectangularity of differentiation, a consequence is that the solution functions are discretized at more
nodes than the equations, and different variables may be discretized at different numbers of nodes.
This idea is not clearly acknowledged by spectral collocation using row replacement. Our formula-
tion expresses the residual of a differential equation in a fully standard, rather than endpoint-truncated,
interpolation form.

Other successful spectral methods effectively employ variations on the key idea of clearly separating
the space of the solution from the space of the residual: spectral integral formulations of differential
equations (Greengard, 1991; Driscoll, 2010), and ultraspherical spectral methods (Olver & Townsend,
2013), for example. In the tau spectral method (Lanczos, 1938; Fox, 1962), the problem (4.1)–(4.2) is
approached by expressing the solution in the form u(x) =∑N

k=0 ukTk(x). This expression is substituted
into (4.1), which is evaluated in spectral form (i.e., matching of polynomial coefficients). However, in
order to make room for also imposing (4.2) in spectral form, the differential equation is imposed only
up through degree N − 1.

The mathematical relationship between rectangular collocation and tau discretization is entirely
determined by how (4.1) is evaluated—specifically, in how the multiplication terms a(x)u′(x) and
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b(x)u(x) are reduced to degree N − 1. If the coefficient functions are approximated to degree N − 1
and Toeplitz/Hankel multiplication operators are created to represent the necessary convolution, as in
Baszenski & Tasche (1997) and Olver & Townsend (2013), for example, then the difference from the
rectangular collocation method is in aliasing of coefficients of index order O(N), a difference that van-
ishes exponentially fast for smooth functions. In particular, when the coefficient functions are constant,
proofs of tau convergence (Fox, 1962) should be straightforward to convert to proofs of rectangular
collocation convergence.

The chief practical difference between tau and rectangular collocation is that, in the former,
differentiation and integration are simple and sparse, whereas multiplication is messier and dense; in the
latter case, the situation is exactly the opposite. Collocation is a bit more straightforward when it comes
to unusual boundary conditions. Traditionally, collocation is also very different in nonlinear problems,
where a nonlinear discretization is solved by standard optimization, but as mentioned in Section 4.2
we approach nonlinear problems by linearization before discretization, which greatly diminishes the
difference from tau methods.

Another interesting and apparently general approach to problems with unusual boundary conditions
is the fictitious point method (Fornberg, 2006). Here, again the number of points at which the solution
is represented is greater, by the number of boundary conditions, than the number of points at which the
equation is imposed. However, the additional nodes are not found as part of a standard Chebyshev grid,
but instead are fictitious nodes outside the domain of the function. The discretized boundary conditions
are then used to eliminate the direct influence in those extra nodes, as in Schur complementation. In the
end, a square linear system is solved at the standard Chebyshev nodes. In theory, the specific locations
of the fictitious nodes are irrelevant, because they all generate the same underlying interpolant before
being eliminated, but in practice a little care is needed to preserve numerical stability. One also must use
a procedure for generating differentiation matrices on arbitrary node sets (Fornberg, 1998; Weideman
& Reddy, 2000). In practice, one should expect little difference from the rectangular collocation and tau
approaches. However, it is built upon a theoretically unclear notion of convergence of approximations
using interpolation nodes outside the domain, and it has a few extra steps that make it less convenient
than the other two methods.

In conclusion, we have introduced a novel means of incorporating boundary conditions in
Chebyshev spectral methods, which removes the ambiguity of the usual ‘boundary bordering’ approach
in the face of nonstandard constraints or higher-order problems. We described how this new approach
could easily be used to modify existing techniques for systems of ODEs, ODE eigenvalue problems and
PDEs, and demonstrated this with numerous examples. The links noted above to other spectral methods
in the literature, combined with the idea of linearization in continuous function space to effectively limit
all discrete problems to linear ones, suggest that the variety of methods available may overlap a great
deal in their theoretical underpinnings, differing substantially only in their implementations.
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