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Abstract. AAA rational approximation has normally been carried out on a discrete set, typically
hundreds or thousands of points in a real interval or complex domain. Here we introduce a continuum
AAA algorithm that discretizes a domain adaptively as it goes. This enables fast computation of
high-accuracy rational approximations on domains such as the unit interval, the unit circle, and the
imaginary axis, even in some cases where resolution of singularities requires exponentially clustered
sample points, support points, and poles. Prototype MATLAB (or Octave) and Julia codes aaax,
aaaz, and aaai are provided for these three special domains; the latter two are equivalent by a M\"obius
transformation. Execution is very fast since the matrices whose SVDs are computed have only three
times as many rows as columns. The codes include a AAA-Lawson option for improvement of a
AAA approximant to minimax, so long as the accuracy is well above machine precision. The result
returned is pole-free in the approximation domain.
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1. Introduction. The AAA algorithm, introduced in 2018 [27], is a numer-
ical method for rational approximation of a function f on a real or complex do-
main. Because of its speed, reliability, and domain flexibility, AAA has become a
standard method for these computations, with a rapidly growing literature. Ap-
plications to date include analytic continuation [10, 38], interpolation of equispaced
data [21], Laplace problems with applications to magnetics [6, 7], conformal mapping
[16, 37], Stokes flow [44], simulation of turbulence [23], nonlinear eigenvalue prob-
lems [18, 24, 32], finite element linearizations [9], design of preconditioners [2, 11],
model order reduction [1, 8, 17, 22, 31], and signal processing [11, 20, 25, 40, 43].
For signal processing, AAA is the basis of the rational code in the MathWorks RF
Toolbox [25], and there have also been generalizations to multivariate approximation
[3, 17, 20, 22, 24].

In some applications, one wants a rational approximation on a discrete set Z
of N points of \BbbR or \BbbC . More often, however, one would like to approximate on a
continuum E such as the unit interval [ - 1,1], the unit circle or unit disk, or the
imaginary axis. In such cases AAA has normally been applied by approximating E
by a fixed discrete set Z, chosen in advance, with N typically in the hundreds or
thousands. The algorithm computes repeated SVDs (singular value decompositions)
involving Loewner matrices with about N rows and m = 1,2,3, . . . columns, where
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A930 DRISCOLL, NAKATSUKASA, AND TREFETHEN

m  - 1 is the degree of the rational function being constructed. Since m is usually
below 100 and the operation count of such an SVD grows only linearly with N , the
cost associated with having many more rows than columns is usually not too great.

Nevertheless, it would be good to have a AAA algorithm that works directly with
the continuum. We see three reasons for this. First, it is unappealing philosophically
to require the user to specify a discrete set rather than the domain that is actually
of interest. Second, although the cost of user discretization may only be a constant
factor (loosely speaking), it is still a shame if this factor is large, in cases where the
Loewner matrix is very tall and skinny. This may become particularly important in
situations where the evaluation of f is expensive. Third is the challenge of computing
approximations with poles and zeros clustering near the approximation domain E.
Exponential clustering of poles near singularities is essential, for it is the source of
the special power of rational approximation in such cases [30, 39]. But for this to
work, exponentially clustered sample points are needed too, and where should they
be placed? As experienced AAA users, we have become adept at defining grids by
expressions like logspace(-14,0,1000) (for approximation on [0,1] with a singu-
larity at 0) and tanh(linspace(-16,16,1000)) (for approximation on [ - 1,1] with
singularities at both ends), but some experimentation is always needed to get it right,
and user ingenuity has to increase when there are more singularities. And, of course,
some problems have singularities at unknown locations, as can occur in model order
reduction applications when there are poles near the imaginary axis.

This paper introduces an algorithm for continuum AAA approximation along
with template MATLAB (or Octave) and Julia codes, each about 100 lines long, for
the special cases of the unit interval, the unit circle or disk (these two are distinct for
reasons we shall discuss), and the imaginary axis or right half-plane. The algorithm
proceeds by greedily choosing support points in the usual AAA fashion, which then
determine a new sample grid at every step defined by having three equispaced sample
points between each pair of support points. Just six new sample points are added at
each step. (One could reduce the number to four, but experiments suggest this is less
robust.) Poles of the current approximation are computed at every AAA step, and
if ``bad"" poles appear (i.e., poles in E), the current approximation is never returned
as the final AAA approximant. Following the AAA-Lawson variant algorithm intro-
duced in [29], the user may specify that the AAA iteration should be followed by a
barycentric Lawson iteration to improve the approximation to minimax form.

Figures 1 and 2 give an indication of the behavior of the continuum AAA algo-
rithm and the template codes. (These and all our illustrations are based on our MAT-
LAB rather than Julia codes, except in Figure 18.) The first image of Figure 1 shows
the error in approximation of ex on [ - 1,1] to the default tolerance of 10 - 13. The func-
tion call r = aaax(@exp) delivers a function handle r corresponding to a barycentric
representation of a rational approximation of f of degree 6, the computation taking
less than a millisecond on a laptop (excluding plotting). The second line shows the
error in minimax approximation of ex computed by r = aaax(@exp,5,20), which
specifies rational degree 5 and 20 steps of AAA-Lawson iteration (our usual num-
ber). Note our convention of using a purple color to distinguish error curves obtained
from AAA-Lawson computations. This computation takes about 5 ms; the Chebfun
minimax code [13, 14] takes about eight times as long. (All the timings in this paper
are approximate.) The third line treats the classic example [30] of a more difficult
function with a singularity, f(x) = | x| . Here the final degree is 110, corresponding to
a much heavier computation, but still the execution is fast, about half a second. The
approximation returned has maximal error about 1.3\times 10 - 12, which is not far from
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Fig. 1. Illustration of aaax for rational approximation r\approx f on [ - 1,1], with each image showing
the absolute error f(x)  - r(x) sampled at 1,001 equispaced points. Top: AAA approximation of
f(x) = ex to default accuracy 10 - 13 (1 ms on our desktop, degree 6). Middle: AAA-Lawson minimax
approximation of f(x) = ex of degree 5 (5 ms). Here and in other figures, AAA-Lawson error curves
are distinguished by a purple color (color online). Bottom: AAA approximation of f(x) = | x| to
requested accuracy 10 - 13 actually terminates with accuracy 1.3 \times 10 - 12; see also Figures 7 and 8
(600 ms, degree 110).
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Fig. 2. Illustration of aaaz for approximation on the unit circle, with each image showing the
error curve f(z)  - r(z), where z ranges over 1,000 equispaced points on the circle. Left: AAA-
Lawson minimax approximation of f(z) = ez of degree 5 (12 ms, error curve of winding number

11). Middle: AAA approximation of
\sqrt{} 

1 - z - 2/4 to default accuracy 10 - 13 (5 ms, degree 12).
Right: AAA approximation of

\surd 
1 - z again with default accuracy specification 10 - 13, though the

code terminates at 10 - 9 (110 ms, degree 56). In this last case the parameter mero is set to 0, so the
approximation is forced to be analytic in the unit disk.

the theoretical minimum for an approximation of this degree, about 4\times 10 - 14 [33].1

By contrast the Chebfun minimax code fails above degree 82, even though this is the
most powerful Remez algorithm implementation available, and for this it requires four
minutes to compute an approximation with the optimal error 3.1\times 10 - 12.

All these computations benefit crucially from the numerical stability of the
barycentric representation of r, as is used by both AAA approximation and minimax.

1For a polynomial to approximate | x| to accuracy 1.3\times 10 - 12 on [ - 1,1], it would need degree
about 215,000,000,000 [41].
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Varga, Ruttan, and Carpenter showed that if one works with the quotient represen-
tation r(x) = p(x)/q(x), where p and q are polynomials, then computing a degree
80 approximation of | x| requires 200-digit arithmetic [42]. The explanation of this
instability is given in the discussion of Figure 5 in the next section; see also [14, 27].

Figure 2 gives a similar illustration of aaaz for complex approximation on the unit
circle. The first image shows degree 5 minimax approximation of ez, with an error
curve (f  - r)(| z| = 1) that looks perfectly circular. Near-circularity of error curves is
a general phenomenon in complex minimax approximation, and for this example the
exact error curve is circular to about one part in 1012 [34, 35]. The second image shows
AAA approximation to the default tolerance of f(z) =

\sqrt{} 
1 - z - 2/4, a function that is

analytic on the unit circle but has branch points at z =\pm 1/2. For this approximation
the flag mero, to be discussed in section 3, has been set to 1 to allow poles in the unit
disk; thus we are truly approximating on the circle, not the disk. The third image
shows AAA approximation of f(z) =

\surd 
1 - z, which has a singularity on the unit

circle. This time mero has been left at its default value 0, forcing the approximation
to be analytic in the unit disk. The reason the accuracy is only 10 - 9 is that after this
point, the AAA iteration produced a string of approximations with poles in the unit
disk, so the code has reverted to its best approximation found so far that is pole-free
in the disk, as will be discussed in section 2.

The next four sections present the details of continuum AAA on the unit interval,
the unit circle or disk, the imaginary axis or right half-plane, and other real and com-
plex domains. Many examples are shown along the way. Section 6 discusses certain
challenges faced by the algorithm. The final section summarizes various aspects of
continuum AAA approximation and its prospects. Our current algorithm is certainly
not the last word on this subject, but it appears to be a substantial advance over
what has been available before.

We would like to conclude this introduction with some comments on the relation-
ship between minimax approximations, which can be computed by the AAA-Lawson
variant, and near-minimax approximations, computed by AAA without Lawson.

Minimax approximations are undeniably fascinating. In real approximation, they
are characterized by equioscillatory error curves, and in complex approximation they
feature the complex analogue shown in Figure 2, error curves that are nearly circular,
sometimes so close to circular that the variation of modulus could not be detected in
floating point arithmetic. This makes minimax approximations beautiful, memorable,
and easily recognized at a glance. For these reasons, many of the figures in this paper
show minimax approximations.

For applications of rational approximation, nevertheless, we believe that minimax
approximation should not always be the starting point. The crucial reason in that it is
now known how to compute minimax approximations as quickly and reliably as near-
minimax ones. In the case of AAA approximation, adding a Lawson phase typically
roughly doubles the computation time for the benefit of typically gaining just about
a digit of accuracy, and with a greater risk of failure. (The size of the gain can be
judged by noting the gaps between the green circles and the blue dots above them in
Figures 4, 5, 10, and 12 below.) In particular, AAA-Lawson will almost always fail if
one is dealing with approximations of accuracy close to machine precision. Thus in
practice, as in the first two panes of Figure 1, one is often forced to choose between a
nonoptimal approximation of accuracy close to machine precision and an ``optimal""
approximation of lower accuracy! (The latter has lower degree.)

To put it in another way, even if we keep well away from machine precision,
the practical difference between minimax and near-minimax approximations is not
that the former achieves slightly better accuracy, but that it achieves a prescribed
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accuracy with a slightly lower degree. This benefit is a modest one, easily outweighed
by a reduction in speed and robustness.

2. Continuum AAA on [ - 1,1]. The precise specification of our algorithm
can be found in the MATLAB code of the appendix, particularly the 32 lines labeled
``Main AAA loop."" In this section we discuss the essential features, assuming the
reader already has some familiarity with AAA [27].

The highest level description of the algorithm is as follows. At each step we
have a row vector S = [s1, . . . , sm] of m support points in [ - 1,1] and a column vector
X = [x1, . . . , xN ]T of N = 3(m - 1) sample points in [ - 1,1]\setminus S, three equispaced sample
points between each pair of support points. The sample points are constructed from
S by a function X = XS(S).

S = [ - 1,1]
for m= 2,3, . . .until convergence

(1) X := XS(S)
(2) Use SVD to compute barycentric weights for next approximation r\approx f
(3) S := S\cup \{ a sample point xi \in X where | f(xi) - r(xi)| is maximal\} 

end
Step (2) is the linearized least-squares computation introduced in [27], involving

an N \times m Loewner matrix A with entries

(2.1) aij =
f(xi) - f(sj)

xi  - sj
.

If the m-vector w is a minimal singular vector of A, then

(2.2) \| Aw\| 2 =minimum, \| w\| 2 = 1,

or equivalently,

(2.3) \| fd - n\| 2 =minimum, \| w\| 2 = 1,

where n and d are the numerator and denominator of the barycentric quotient

(2.4) r(x) =

m\sum 
j=1

wjf(sj)

x - sj

\Bigg/ 
m\sum 
j=1

wj

x - sj
.

In both (2.2) and (2.3), \| \cdot \| 2 is the discrete 2-norm over X.
Step (3) amounts to greedy selection of the next support point, the standard

nonlinear step of AAA approximation.2

Step (1) is the feature that distinguishes continuum AAA from its fixed-grid
predecessor. At each iterative step, the vector X is determined by the current vector
S of support points. From one step to the next most sample points stay the same,
except in the interval between the two support points where a new support point snew
has been introduced in step (3); let us call this interval (sj , sj+1). At step (1) the
three sample points in (sj , sj+1) are removed and six new sample points are added,
three in (sj , snew) and three in (snew, sj+1).

Note that the insertion of three new sample points between each new pair of
support points, if it happened near the same point at each step, would correspond to

2We are struck by an analogy. One of the jewels of numerical analysis is the QR algorithm for
computing the eigenvalues of a matrix. The core of the QR algorithm is an alternation between
a matrix computation, QR factorization, and an elementary but crucial nonlinear step, a diagonal
shift. The same can be said of steps (2) and (3) that define AAA.
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an exponential clustering of support points at a rate O(4 - m), which would allow the
numerical resolution of poles and zeros clustering at a similar rate. As follows from the
theory of [15], this rate of clustering is more than enough to enable root-exponential
convergence of rational approximations to any algebraic branch point singularity.

In fact, we have slightly simplified the description of step (1). Inspection of the
code XS will show that it takes not one but two arguments, X = XS(S,p), so that
an arbitrary number p of sample points will be placed between each pair of support
points. The code aaax sets p = max\{ 3,16  - m\} at step m, so that p begins at
p = 14 for m = 2 and reduces linearly with m until it hits p = 3 for m \geq 13. This
is an engineering adjustment to ensure that the function f is sampled at dozens of
points during the approximation process, rather than as few as three points. Such
precautions have been a familiar feature of adaptive numerical algorithms since the
first adaptive integrators were introduced in the 1960s.

The other feature of the algorithm to be spelled out is the convergence criterion.
The iteration stops if the maximum norm relative error on the sample points falls
below a prescribed value tol, set by default to 10 - 13. The actual maximum error
over all of [ - 1,1] will be slightly larger, and this is checked a posteriori by evaluation
on the finer grid XS(S,30). (If function evaluations are expensive, this step can be
modified.) The iteration also stops if a prescribed maximum degree is reached, which is
set by default to 150. In addition the iteration stops if 10 steps in a row have produced
``bad poles,"" that is, one or more poles in [ - 1,1], and at least two digits of accuracy
have been achieved. Poles are computed by means of a generalized eigenvalue problem
by the prz code adapted from Chebfun; this is extremely fast and accurate, adding
only about 25\% to the overall computation time even though poles are computed at
every AAA step. In the case of termination due to bad poles, the approximation r
returned by aaax is the last one that was successfully computed without bad poles, so
its accuracy will not be as good as 10 - 13. In practice we often find that a few digits
are lost, but the approximation is always pole-free in the approximation interval.

We have just described a test for bad poles that depends on whether the computed
eigenvalues of a generalized eigenvalue problem are exactly real or not. Tests for exact
equality are suspect in numerical analysis, but this is a special case because of real
symmetry (assuming the function f is real). Rounding errors in a backward stable
algorithm cannot perturb a single eigenvalue off the real axis, but only a group of
two or more clustered eigenvalues. Thus in most cases we can expect the test for an
exactly zero imaginary part to give the right answer, and so far as we can tell, this is
a trouble-free part of our algorithm in practice.

In the default mode of operation, with an invocation as simple as r = aaax(f),
the continuum AAA algorithm produces a pair of plots showing convergence and
the final error curve. This is illustrated first in Figure 3 for a smooth function,
f(x) = exp( - 1/x2). Note that red dots are used to mark steps of the iteration with
bad poles. The errors are measured on the sample grid; off the grid, the error in cases
with bad poles would be \infty . The green circle in the upper plot, corresponding to the
error value printed in the title of the lower plot, is the actual error as computed on
the finer plotting grid.

If a second argument is provided to aaax, this is interpreted as the degree m - 1
for the approximation (2.4) (more precisely a maximum degree, since the prescribed
tolerance may be achieved earlier). Typically the result is an approximation whose
error is on the order of a factor of 10 or so greater than the minimax error for that
degree. If a third argument is also provided, this is interpreted as a number of
AAA-Lawson iterative steps to take in an attempt to improve the approximation
to minimax. The 18 lines of Lawson code, which can be seen in the appendix, are
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Fig. 3. Plots produced by aaax in approximating f(x) = exp( - 1/x2). The upper image shows
convergence as a function of degree, with red dots marking steps with ``bad poles,"" i.e., poles in
[ - 1,1]. The red-blue alternation is a result of f being even. The second image shows the final error
curve and maximal error on a finer grid. (Computation time excluding plotting: 20 ms.)
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Fig. 4. Approximation of the same function f(x) = exp( - 1/x2), but now with the function
call aaax(f,24,20) to specify maximal degree 24 and 20 AAA-Lawson steps. The result shows the
expected equiosillation with an error of 6.6 \times 10 - 13 (25 ms). The green circle lies below the final
blue dot because AAA-Lawson has improved the error.

adapted from the algorithm introduced in [29]. We normally take 20 Lawson steps,
and as discussed in [29], convergence occurs in the majority of cases so long as the
error level is well above machine precision. Such a computation is illustrated in
Figure 4, showing the result for degree 24 minimax approximation of the same function
f(x) = exp( - 1/x2) via aaax(@(x) exp(-1./x.\^2,24,20)). A fourth argument to
aaax allows one to adjust the convergence tolerance.

Figure 5 shows an example that is equivalent to a famous rational approximation
problem, the degree n rational approximation of es for s\in ( - \infty ,0] first considered by
Cody, Meinardus, and Varga [5]. Setting s = (x - 1)/(x+ 1) transplants this to the
problem of degree n approximation of exp((x - 1)/(x+ 1)) for x\in [ - 1,1]. Executing
aaax(@(x) exp((x-1)./(x + 1)) produces Figure 5 in about 20 ms of computing
time. The same approximation can be computed by Chebfun minimax, taking about
100 times as long. For more on this problem see pp. 214--219 of [36].
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Fig. 5. Approximation of exp((x  - 1)/(x + 1)) on [ - 1,1], which is equivalent to the Cody--
Meinardus--Varga problem of approximation of exp(s) on ( - \infty ,0] (20 ms). Here the degree 12
AAA-Lawson result is computed.
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Fig. 6. Approximation of the sigmoidal or Fermi--Dirac function f(x) = 1/(1 + exp(1000(x+
0.5))) (20 ms).

The example of Figure 5 provides an illustration of the importance of the barycen-
tric representation for numerical stability. If r is written as a quotient of polynomials
p/q for this approximation, then q decreases by a factor on the order of 1011 as x
moves from 1 to  - 1, and p decreases by a factor on the order of 1023. In floating
point arithmetic, one would need a precision of more than 23 digits to retain any
accuracy for x\approx  - 1. This effect gets rapidly more extreme at higher degrees.

Figure 6 considers approximation of the sigmoidal or Fermi--Dirac function f(x) =
1/(1+ exp(1000(x+0.5))) arising in electronic structure calculations, which makes a
rapid transition from f(x) \approx 1 for x <  - 0.5 to f(x) \approx 0 for x >  - 0.5. A degree 38
rational approximation of accuracy 1.3\times 10 - 13 is obtained in 20 ms. This appears to
offer a big improvement over a recently published algorithm for this problem [26].

Our final example of this section returns to the problem shown in Figure 1, ap-
proximation of f(x) = | x| . Figure 7 presents the convergence curve in this case,
showing root-exponential convergence with approximately alternating blue and red
dots (since f is even) until at a level below 10 - 12, all the dots turn red and the
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Fig. 7. Approximation of the classic function with a branch point singularity, f(x) = | x| , show-
ing root-exponential convergence as discovered by Newman [30]. 12-digit accuracy is achieved in 600
ms. The black line under the data points shows the error of true minimax approximation.
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Fig. 8. Upper plot: the error f(x) - r(x) in continuum AAA approximation of | x| on [ - 1,1],
plotted for x\in (0,1] now on a semilogx scale. Lower plot: support points on the same scale, together
with absolute values of conjugate pairs of poles and zeros near the imaginary axis.

iteration terminates. This successful computation of an approximation accurate to
12 digits in ordinary machine arithmetic happens in less than a second of computer
time.

It is known that the power of rational approximation for functions with singulari-
ties derives from exponential clustering of poles and zeros near these points [39]. The
success of AAA for such problems depends on the support points being exponentially
clustered too. Figure 8 illustrates how the continuum AAA computation of Figure 7
has achieved the necessary clusterings for all three sets of points. The curve in the
figure represents the error f(x) - r(x) on the positive half of the domain, x \in (0,1],
and dots are placed on the same horizontal scale representing support points in (0,1]
(black), absolute values of zeros (green), and absolute values of poles (red). The poles
and zeros lie approximately on the imaginary axis and in conjugate pairs, so each
green and red dot has multiplicity 2. It is evident that poles and zeros are (mostly)
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Fig. 9. Support points in (0,1] in successive steps of approximation of | x| on [ - 1,1] to tolerance
10 - 10. Newly added support points are marked in red. As m increases, the singularity is gradually
resolved by exponential clustering, and the curvature of the upper envelope reveals the phenomenon
of tapering.

interlacing and exponentially clustered toward x = 0, with the support points ex-
ponentially clustered in a similar manner. Toward x = 0 the spacing between dots
stretches out, the ``tapering"" effect analyzed in [39]. All this is computed blindly by
the continuum AAA algorithm, which has no knowledge of optimality conditions or
of the theory of exponential clustering.

Figure 9 gives further details about the step-by-stop progress in this approxima-
tion of | x| on [ - 1,1], showing the support points in (0,1] at each step m from 2 to
74. As the iteration proceeds, support points gradually appear exponentially closer
to x = 0, but larger values of x accumulate more support points too. If the upper
envelope of this plot were straight, that would correspond to what we call uniformly
exponential clustering, but in fact it is curved, revealing again the phenomenon of
tapering.

Some problems of interest, such as those of Figures 4 and 7--9, involve functions
f(x) that are even or odd, and the algorithms could be modified to exploit this
symmetry. We comment on exploitation of symmetry at the end of the next section.

3. Continuum AAA on the unit circle or disk. For approximation on the
unit circle, our algorithm is mostly the same; the detailed changes can be seen in the
code aaaz available in the supplementary materials (SupplementalCode.zip [local/web
14.4KB]). Sample points are now placed between support points all around the circle
with respect to angle or, equivalently, arc length. If AAA-Lawson is invoked, a nu-
merical winding number is calculated since this is of interest for best and near-best
approximations because of Rouch\'e's theorem. In the simplest case, if a function f
analytic in the disk has a degree m - 1 rational approximation r that is also analytic
in the disk, and the error curve (f  - r)(| z| = 1) is nearly a circle of winding number
\geq 2m - 1, then \| f  - r\| must be correspondingly close to minimal [35, Propositions
2.1 and 2.2]. This is a complex analogue of the well-known de la Vall\'ee Poussin lower
bound in real approximation on an interval [36].
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Fig. 10. Continuum approximation of f(z) = tan(z4) on the unit circle. Upper row: aaaz(f)

(30 ms). Lower row: aaaz(f,28,20) (40 ms). In the second case, in addition to the 24 poles visible
in the plot, there are four more with moduli about 6.

Figure 10 illustrates aaaz approximation of f(z) = tan(z4). This function is
analytic in the disk and meromorphic outside, with eight rays of poles extending to
\infty . Continuum AAA achieves the prescribed accuracy by approximating the rays each
by four poles. (Note that the errors in the convergence plot decrease in a staircase
pattern because of the symmetry, a reflection of the Walsh table of best rational
approximants to f breaking into 4\times 4 blocks of identical entries [36].) The innermost
eight poles have moduli matching the value (\pi /2)1/4 for f to about 12 digits, and
the next three rings of eight poles match the corresponding poles of f to about five,
two, and one digits, respectively. Similarly, the lower row of the figure shows an
approximation to the same function with degree 28 and 20 steps of AAA-Lawson.

Although continuum AAA for the unit circle is like the algorithm for the unit
interval, two new issues arise. The first is that the domain now encloses an interior,
which raises the question, Should the approximation r be required to be analytic
there? In other words, if a pole appears with | z| < 1, should it be regarded as a bad
pole? For some problems the answer will be yes, if an approximation analytic in the
disk is sought, and in other cases it will be no, when we truly wish to approximate
just on the circle. The code aaaz controls this choice with an input parameter mero
(``meromorphic""), which by default is set to 0. If mero= 0, then poles in the disk are
treated as bad, following the same logic as described in the last section. If mero \not = 0,
then poles in the disk are accepted. (The possibility of poles exactly on the unit circle
is unlikely enough in floating point arithmetic that we do not worry about it.)

Suppose, for example, we wish to approximate f(z) = tan(z - 4) on the unit circle
instead of tan(z4). With the default value mero = 0 this will result in failure (not
shown), and indeed it is obvious that \| f  - r\| can be no less than tanh(1) \approx 0.76
for a function r analytic in the disk since tan(z - 4) has winding number  - 4 on the
unit circle and minimal modulus tanh(1), whereas an analytic function r must have
nonnegative winding number. (This is Rouch\'e's theorem again.) With mero = 1,
however, the approximation is straightforward, and the result is shown in Figure 11,
essentially a reflection in the unit circle of the upper row of Figure 10.
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Fig. 11. Approximation of tan(z - 4) with the mero parameter set to 1, so that poles of r are
permitted in the interior of the disk (30 ms).
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Fig. 12. Approximation of f(z) = exp(4/z) on the unit circle, with an essential singularity at
z = 0. Upper row: aaaz(f) (30 ms). Lower row: aaaz(f,28,20) (40 ms).

Figure 12 shows another pair of examples, near-minimax and minimax, involving
the function f(z) = exp(4/z), which has an essential singularity at z = 0. Although
f itself is not meromorphic in the unit disk, it is still analytic on the unit circle, and
aaaz with mero= 1 has no trouble constructing approximations.

Figure 13 shows approximation on the unit circle of f(z) = | Re(z)| , boundary data
that cannot be matched by any function analytic inside or outside the disk. In the
fashion familiar in the theories of Wiener--Hopf factorization and Riemann--Hilbert
problems, however, it can still be regarded as the sum of one function analytic inside
the disk plus another analytic outside (``analytic plus coanalytic""). As discussed
in [7], AAA approximation may provide a valuable tool for such problems. The
figure shows approximation to 13 digits by a rational function of degree 235, which
has about 60 poles exponentially clustered on both sides of z = i and z =  - i. By
separating the two sets of poles and switching to a partial fractions representation
with coefficients determined by linear least-squares fitting, this can be the basis of
very interesting further computations, including the solution of the Laplace or Stokes
equations [6, 7, 44]. This is the so-called AAA--least squares method, and a one-
paragraph introduction can be found in [28].
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Fig. 13. Approximation of | Re(z)| on the unit circle with the mero parameter set to 1, with
exponentially clustered poles on both sides of z =\pm i (9 s). Removing the poles inside or outside of
the disk would be the first step toward a AAA--least squares computation as proposed by Costa [6, 7].
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Fig. 14. Conformal mapping example. The upper plot shows the conformal image in an L-
shaped region of concentric circles and radial lines in the unit disk, as computed by the SC Toolbox
for MATLAB [12]. The lower image shows a degree 100 continuum AAA rational approximation.
The position of the green circle reflects a loss of accuracy near some of the vertices.

Figure 14 returns to functions analytic in the disk with an example from numerical
conformal mapping. A conformal map f of the unit disk onto a polygonal region can
be represented as a Schwarz--Christoffel (SC) integral, and the standard software for
computing such maps is the SC Toolbox for MATLAB [12]. As pointed out in [16],
an effective strategy for representing SC maps numerically is rational approximation,
taking advantage of poles exponentially clustered near corner singularities. The figure
shows the result of degree 100 rational approximation of a map onto an L-shaped
region as generated by essentially this MATLAB code:

v = [0 1i -1+ 1i -1-1i 1-1i 1];
f = diskmap(polygon(v)); f = center(f,-.25-.25i); plot(f)
r = aaaz(f, 100);

Note that the poles of the approximant cluster exponentially near six ``prevertices""
along the unit circle. The accuracy is about six digits over most of the domain but
falls to four digits very near the vertices (near five of them, to be precise). The
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rational approximation can be used to map points z in the disk to their images in the
L shape about 10 times faster than with the SC Toolbox (about 1 ms versus 10 ms
per evaluation). As pointed out in [16], the ratio of speeds for evaluating the inverse
map f - 1 typically exceeds 100.

The other new feature that arises in approximation on the circle is the matter of
real symmetry. A function f is said to be real symmetric (or conjugate symmetric or
Hermitian symmetric) if f(z) = f(z), and in such cases one might like to require the
approximation r to be real symmetric too. This is attractive not just cosmetically
but also because exploiting the symmetry can provide a significant speedup.

Our template code aaaz does not include an option to enforce real symmetry,
and it breaks symmetry in two ways. The first is simply by rounding errors. Second
and more important, even in exact arithmetic, the sequence of support points will be
nonsymmetric in general. One could modify the code to force symmetry at all stages,
and various authors have done this [8, 20, 25, 40]. Other types of symmetry, most
notably odd and even symmetry as mentioned at the end of the last section, could
also be optionally enforced.

4. Continuum AAA on the imaginary axis or right half-plane. Many
applications, especially in control theory and model order reduction, feature approxi-
mations f(z)\approx r(z) on the imaginary axis, typically with a constraint that the poles
should be in the left half-plane: in other words, r should be analytic in the right half-
plane. These problems can be regarded as transplants of approximation problems on
the unit circle by a M\"obius transformation. Specifically, the functions

(4.1) z =M

\biggl( 
1 +w

1 - w

\biggr) 
, w=

z  - M

z +M

describe a bijection of the unit disk in the w-plane and the right half of the z-plane,
with w =  - 1,0,1 corresponding to z = 0,M,\infty . As a practical matter, it might be
desirable for a code to include M as a parameter, since in an application one might
happen to know that most of the action of f(z) on the imaginary axis occurs, say,
on the scale | Imz| =O(106) rather than O(1). Our code arbitrarily fixes M = 1.207,
a choice close to 1 but not equal to it so as to lead to fewer surprises since a pole
z = - M goes undetected because it is mapped to \infty by the M\"obius map.

Our template code aaai is a shell that calls aaaz after the transplantation (4.1).
It has the same arguments f for the function, deg for the degree, nl for the number of
AAA-Lawson iterations, tol for the tolerance, and mero to specify if a meromorphic
approximation is permitted (i.e., with poles in the right half-plane as well as the left).
We have not investigated continuum approximation on the imaginary axis in detail and
give just two examples. Figure 15 shows near-minimax and minimax approximations
to the function

(4.2) f(z) =
1\surd 

z  - a
\surd 
z  - a

, a= - 1 + 10i.

This function has branch points at z = - 1\pm 10i, and these are reflected in the denser
error oscillations for | Imz| \approx 10. The figure shows the real part of the complex error
f(z) - r(z). For the second, minimax approximation the complex error curve describes
a near-circle of winding number 35 as z traverses the imaginary axis downward from
+\infty i to  - \infty i.
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Fig. 15. Errors in AAA approximation of (4.2) on the imaginary axis to the default tolerance
10 - 13 (25 ms) and with degree 20 and 20 Lawson steps (70 ms). Both f and the error f  - r are
complex, and just the real part of the error is plotted.
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Fig. 16. Poles in the complex plane for the clamped beam example from the NICONET collec-
tion [4]. On the left, the eigenvalues of the 348\times 348 matrix A, which are the poles of its resolvent
function. On the right, the poles of the degree 24 AAA approximant computed with aaai. The
poles near the imaginary axis are closely approximated, giving about 10 - 4 relative accuracy with (if
symmetry is exploited) 72 function evaluations.

The second example, shown in Figure 16, comes from the ``clamped beam"" prob-
lem from the NICONET collection of examples for model order reduction [4], which
was also considered in Figures 6.13--6.14 of the original AAA paper [27]. The figure
shows the poles of a continuum AAA approximation of degree 24 with a relative error
of about 10 - 4. For this problem, each function evaluation amounts to a scalarized
resolvent, involving the inverse of a shift of a 348 \times 348 matrix A, and there are
144 function evaluations. This number would be cut in half if real symmetry were
exploited, so in effect we are getting four-digit accuracy with about 72 function eval-
uations as compared with the number 500 used in [27]. The figure shows most of the
348 eigenvalues of A on the left (a few are off-scale), and on the right the 24 poles
of the approximation r. The poles nearest the imaginary axis are captured closely,3

3More precisely, the rightmost three conjugate pairs of poles of r match the rightmost, second-
rightmost, and fourth-rightmost conjugate pairs of eigenvalues of A to about six, three, and three
digits, respectively. The third-rightmost conjugate pair of poles of A is not matched by a pole of r,
and indeed, this mode appears not to be excited at all in the beam example data. In particular there
is no peak at the appropriate position z \approx 0.79i on the imaginary axis in Figure 6.13 of [27].
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and their asymmetric configuration is a reminder that our codes do not enforce real
symmetry.

In this section we have considered approximation on the imaginary axis, but of
course, there are also problems posed on the real axis. Analogously, these may come
with a requirement of analyticity in the upper or lower half-plane. These problems
can be reduced to the former case by a multiplication by i or  - i.

5. Other real and complex domains. The algorithm we have presented ex-
tends readily to other domains. Approximation on \BbbR has just been mentioned. Ap-
proximation on a semi-infinite line like [0,\infty ) can be treated by a M\"obius transforma-
tion to [ - 1,1], just as we used a transformation to the unit circle for approximation
on the imaginary axis. Another real domain of interest in applications, going back
to Zolotarev in the 19th century, is a pair of intervals [a, b] \cup [c, d]. Here we would
follow the algorithm essentially as described, with four initial support points a, b, c, d
and new support and sample points introduced in either [a, b] or [c, d] at each step.

On complex domains we follow the pattern for the unit circle of working on
the boundary contour, either with or without a requirement of analyticity in the
interior (i.e., no poles). No essential change is needed in the algorithm, which can
now distribute sample points according to arc length or (if the region is starshaped)
the angle with respect to a center point. For our computed illustrations, we have
modified aaaz into a code aaas for approximation on the unit square.

Figure 17 shows two examples. The first consists of degree 8 approximation of
cos(2x) on the square with 20 Lawson steps. This would take 40 ms, except that to
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Fig. 17. Rational approximations on the unit square. Upper row: degree 10 continuum AAA
approximation of cos(4z) on the square and its interior with 20 Lawson steps (100 ms). The error
curve is nearly circular apart from four short portions near the corners of the square, where right
angles are preserved since (f  - r)(z) is a conformal map. In the right image, error contours have
been added to show | f(z)  - r(z)| = 10 - 8,10 - 6, . . . ,100 (from inside out). Lower row: continuum
AAA approximation of f(z) =min\{ Re(z+1), Im(z+1)\} on the square without interior (2.7 ms). The
absence of poles near z = - 1 - i reveals that the algorithm has detected that there is no singularity
there.
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get a better image we have run the Lawson iteration on a grid 10 times finer than
usual: 20 SVD calculations involving matrices of dimension 4509\times 9. This reveals an
error curve that is nearly circular apart from four right angles. In the true minimax
error curve, which emerges if one takes 200 rather than 20 Lawson steps (not shown),
the ``double image"" of the figure goes away as symmetry puts two parts of the error
curve in exact superposition, a consequence of cos(2z) being an even function. The
corresponding improvement in the error is from 8.3\times 10 - 10 to 8.0\times 10 - 10.

A striking application of rational approximation on complex domains is to the
efficient representation of conformal maps, as mentioned in section 3. In particular,
the inverse SC map from a polygonal region to the unit disk can be represented with
great efficiency by rational functions [16].

The second row of Figure 17 shows an example in which the function to be ap-
proximated on the boundary of the square is real, making it necessary to approximate
by a rational function with poles both inside and outside. The boundary function cho-
sen, f(z) =min\{ Re(z+1), Im(z+1)\} , is zero on the left and bottom sides. Thus there
is no singularity at the bottom-left corner, as the zero function is an analytic con-
tinuation to a neighborhood, and the AAA approximation reflects this in placing no
poles near that corner. The other three corners have singularities, however, and the
poles in the figure can be interpreted as delineating approximate branch cuts between
the function branches f1(z) = 0 in the lower left, f2(z) = z + 1 - i near the top, and
f3(z) = 1 + i - iz near the right side. Such approximate branch cut effects are dis-
cussed, among other places, in [38]. As mentioned in connection with Figure 13, this
kind of approximation with poles on both sides is the starting point of the AAA-least
squares method introduced by Costa [6, 7].

6. Areas for improvement. The continuum AAA algorithm is remarkably fast
and accurate for most approximation problems. Like its discrete predecessor, how-
ever, it is sometimes disappointing, especially in approximation of real functions with
singularities. Here we discuss four issues with its behavior, confining our attention to
this most challenging case, approximation by aaax of a real function f(x) on [ - 1,1].

In connection especially with issues 2 and 3, we may mention that one way to
approximate functions with singularities in certain contexts is by splitting the domain
at these points (whether specified by the user or located on the fly). This is done in
Chebfun when constructing approximations on real intervals in ``splitting on"" mode
[13]. The focus of the present paper, however, is on global approximations and on
domains that may be complex as well as real.

1. Failure to meet the convergence tolerance. When f is smooth, aaax typi-
cally converges in milliseconds to the default tolerance 10 - 13. For example,
f(x) = tanh(100x) is approximated in 20 ms by a degree 30 rational function
with error 1.3\times 10 - 14. With f(x) = tanh(1000x); however, red dots appear
for degree \geq 45, indicating the presence of bad poles, and the computation
terminates with degree 43 and error 1.6 \times 10 - 11. This kind of ``red zone
termination"" can be seen in Figure 7.

We believe that in most cases, such failures are related to rounding errors
in floating point arithmetic. This is confirmed by an experiment in quadruple
precision Julia for f(x) = tanh(100x), shown in Figure 18, where convergence
to accuracy 10 - 29 is readily achieved.

Of course, even if a failure would not occur in exact arithmetic, that does
not mean that an algorithm is optimal. We hope that further developments
will enhance the stability of continuum AAA further, so that it more reliably
gets down to 10 - 13 in double precision arithmetic.
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Fig. 18. Comparison of double (dots) and quadruple precision (circles, computed in Julia) for
f(x) = tanh(100x). Both iterations are run until 10 steps in a row with bad poles have appeared.
The agreement of the two data sequences illustrates the practical stability of the continuum AAA
algorithm.

2. Zeroing in on singularities. Examining the behavior of continuum AAA for
problems with singularities reveals that reasonably uniform error behavior is
often not achieved near these points. In fact, trouble near singularities has
already appeared in four of our figures. In Figures 1 and 7, both involving
f(x) = | x| , there is a disconcerting spike in the final error curve. In Figure 14
(conformal map to L shape), the same kind of localized trouble shows up as a
green circle two orders of magnitude above the blue dots, reflecting inaccuracy
near prevertex square root singularities. It is the semilogx plot of Figure 8
that reveals the most. Here we see a much bigger error at the left side of the
plot, off the vertical scale. The dots in this figure suggest that AAA would
have done better to put one or two support points closer to the singularity at
x= 0. We see this in many experiments involving functions with singularities.
Perhaps a modification of the algorithm might enhance its ability to zoom in
speedily to difficult points, but we have not yet found the right trick.

3. Asymmetries and oscillations. Another oddity that arises in certain cases is
a pronounced asymmetry between the errors on the two sides of a singularity,
which sometimes persists on the same side from step to step and sometimes
oscillates from one side to the other (cf. Figure 6.1 of [29]). Figure 19 shows
two examples, both of which ought to be straightforward variations of f(x) =
| x| but in fact are much less successful. In the first plot, for f(x) = | x - 0.95| ,
the final error is 10 orders of magnitude higher for x> 0.95 than for x< 0.95.
Clearly something about the algorithm is out of balance. The second plot
shows a similar imbalance in approximation of the function f(x) =max\{ 0, x\} .
The difficulty looks smaller in magnitude, but it stops convergence just as
surely, and it is particularly embarrassing that our algorithm should do such
a poor job on the famous ``ReLU"" function.

4. Bad poles. Finally there is the perennial question in AAA approximation---
indeed, in rational approximation generally---of what to do when there are
poles in a region where r should be analytic. There is an established tech-
nology available for such problems, introduced in the AAA context in [20]
and used by other authors in different settings (e.g., [7, 21]): one can switch
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Fig. 19. Illustrations of a difficulty that sometimes arises with the continuum AAA algorithm:
the appearance of imbalances between the two sides of a singularity. The images show the final
errors for f(x) = | x - 0.95| and f(x) = max(0, x). The errors 7.5\times 10 - 7 and 1.5\times 10 - 6 are much
worse than the error 1.3\times 10 - 12 for the very similar function f(x) = | x| .

from the barycentric representation to partial fractions, after first discarding
or moving any unwanted poles. It is also possible to discard or move poles
while retaining a barycentric representation [8, 22].

In the early stages of the research that led to this paper, we assumed that the
switch to partial fractions would be an essential part of our algorithm. However, in
the end we did not find enough situations where this was advantageous for us to make
this a part of continuum AAA. One reason to avoid partial fractions is that they
bring a loss of elegance and clarity, since one ends up with an algorithm that delivers
a rational function sometimes in one representation, sometimes in another. A more
serious drawback is that there is usually a loss of several digits of precision. A third
is that, since the poles of a partial fraction representation are fixed, one loses the
possibility of improving a near-minimax fit to minimax by a Lawson iteration.

Our experiments show that in difficult cases, bad poles often arise in approxi-
mately alternate steps rather than in long sequences of steps, until one gets down to
the ``red zone termination"" related to rounding errors as discussed above. In other
words, there are usually enough blue dots for the algorithm to proceed to a successful
conclusion. This need not always be the case, however, especially for functions with
multiple singularities.

Another quite different approach to the bad poles problem is the ``cleanup"" proce-
dure introduced in the original AAA paper [27], which has subsequently been refined
by the third author and Costa (unpublished). Here, when a bad pole is encountered,
the nearest support point is removed from S and a new linearized least-squares fit is
computed. Cleanup is not invoked in the algorithm described in the present paper,
but perhaps it should ultimately play a role in the design of robust software.

7. Summary and discussion. We have introduced a continuum AAA algo-
rithm for minimax and near-minimax rational approximation on real and complex
sets, with template MATLAB and Julia programs for [ - 1,1], the unit circle, and the
imaginary axis. The algorithm delivers an approximation with no bad poles, which
will usually have relative accuracy at the default tolerance level of 10 - 13. The speed
is remarkable, with approximations typically produced in milliseconds. For approxi-
mation of degree m, the total number of function evaluations along the way is \sim 6m.

In the work that led to this paper, many different variants of our algorithm were
explored. The most obvious adjustable parameter, as mentioned in the introduction,
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is how many sample points to insert between each pair of support points. Our exper-
iments suggested that two points were not enough to get consistently good results,
whereas four or more brought little benefit beyond three. That is why three was
the number settled upon, but we do not claim that this choice is optimal in any
precise sense. A more fundamentally different variant we also explored was the use
of computed poles, not just support points, to guide the placement of new sample
points. In fact, pole-based adaptivity was the initial direction of our research. In our
experiments, we were unable to find a version of this idea that performed as well as
adaptivity based on support points.

Our template codes lie in the middle of the spectrum from pseudocode to
software. We hope readers will download them from the supplementary materials
(SupplementalCode.zip [local/web 14.4KB]) or the authors' websites and enjoy suc-
cessful explorations. In the interest of compactness and readability, however, our
codes omit various features that one would expect in true software. The omission of
an option to impose real symmetry was discussed in section 3. Another example is
that we have not structured the codes to avoid recomputation of values f(z) at points
z where they have already been evaluated, which would be important for problems
where evaluation of f is expensive.

There does not appear to be much previous work on adaptive selection of sample
points for barycentric rational approximation, but we note the important recent paper
of Pradovera [31]. He recommends a strategy in which the next sample point is added
at a point where the barycentric denominator is minimal.

The original, discrete AAA algorithm, whose standard implementation is the aaa
code of Chebfun [13], remains fast and important. The simplest starting point in
dealing with an approximation problem may be to simply fix a few thousand points
in a set Z, evaluate F = f(Z), and call aaa(F,Z). This is certainly the way to go
with exotic sets, such as mixtures of discrete and continuum components, and it
also works for approximating functions that are meromorphic rather than analytic in
the approximation domain, with poles amid the sample points. When one is truly
working on a continuum, however, continuum AAA will be more reliable, both because
the adaptive selection of points can bring more speed and accuracy and also, very
importantly, because of the guarantee that the result will be free of bad poles.

Rational approximation problems are of urgent importance in applied areas in-
cluding signal processing and model order reduction and, more recently, solution of
PDEs. We are well aware that this paper is a long way from such applications, focusing
on basic algorithms in the setting of real and complex approximation theory.

With continuum AAA, is it now feasible to develop a system for numerical com-
putation based on rational functions, just as Chebfun makes use of polynomials and
piecewise polynomials? This is a question on our minds for ongoing work.

Appendix A. MATLAB and Julia code templates. Here are listings of the
main MATLAB template code aaax for continuum AAA approximation on [ - 1,1]
and the three functions XS, prz, and reval, the last two adapted from Chebfun.
These codes are intended to be read as well as executed, with careful comments in
the mathematical sections but a rougher uncommented style in the plotting sections.

The similar codes aaaz and aaai for the unit circle and the imaginary axis, respec-
tively, are available in the supplementary materials (SupplementalCode.zip [local/web
14.4KB]), together with Julia equivalents of everything. The Julia codes offer the op-
tion of computation in quadruple precision.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SupplementalCode.zip
https://epubs.siam.org/doi/suppl/10.1137/23M1570508/suppl_file/SupplementalCode.zip
SupplementalCode.zip
https://epubs.siam.org/doi/suppl/10.1137/23M1570508/suppl_file/SupplementalCode.zip


AAA RATIONAL APPROXIMATION ON A CONTINUUM A949

function [r,pol,res,zer,err,S] = aaax(f,deg,nl,tol,plt)

%AAAX Rational approximation on [-1,1].

% [r,pol,res,zer,err,S] = aaax(f,deg,nlawson,tol,plt)

%Examples:

% aaax(@exp); aaax(@exp,5); aaax(@exp,5,20);

% [r,pol] = aaax(@(x) tanh(20*pi*x)); pol

% aaax(@abs,150,0,1e-10);

% INITIALIZATIONS

if nargin< 2, deg = eerged)xam(:2gra%dne;051

if nargin< 3, nl = 02ge,spetsnoswaL:3gra%dne;0

if nargin< 4, tol = ecnarelotevitaler:4gra%dne;31-e1

if nargin< 5, plt = tlp:5gra%dne;1 =0 stops plotting

blue = [0 0 .8]; red = [.8 0 0];

grn = [.5 .8 .5]; MS = ‘markersize’;

CO = ’color’; LW = ‘linewidth’;

S = stptroppusforotcevwor%;]11-[

f0 = f([S’; XS(S,10)]); err = std(f0);

if (err==0) | (err/abs(mean(f0))< =tol) . . . % constant function or deg 0:

| (deg== )tolpon(nruter%)0

r = @(x) mean(f0) + 0*x; return

end

m0 = 2; S0 = S; w0 = [1; -1]; err0 = err;

POOLAAANIAM%eurtelihw

m = length(S);

X = stpelpmasforotcevnmuloc%;))m-61,3(xam,S(SX

C = xirtamyhcuaC%;)S-X(/.1

A = xirtamrenweoL%;C*.))S(f-)X(f(

[~,~,V] = DVS%;)0,A(dvs

w = rotcevtwcirtnecyrab%;)dne,:(V

R = stpelpmastaxorppatar%;)w*C(/.)))’S(f*.w(*C(

err = xorppasihtfororresba%;)fni,R-)X(f(mron

pol = selop%;)w,)’S(f,’S(zrp

bad = any(imag(pol)==0 & abs(pol)< =1); % check for bad poles

co = blue;

fmax = norm(f([S’;X]),inf);

if ~bad & err < err0

m0 = m; S0 = S; w0 = w; err0 = err; % save latest success

end

if plt

subplot(211), if bad, co = red; end

semilogy(m-1,err,’.’,MS,10,CO,co), hold on

title convergence, ylim([1e-16 1e4]), grid on

set(gca,’ytick’,10.^(-16:8:0)), xlabel(’degree (=m-1)’)

end

if ~bad & (err/fmax< =tol) | . . . % stop if converged

(m == deg+1) | . . . % stop if max degree reached

((m-m0> =10) & (err0/fmax< 1e-2)) % stop if stagnated

break

end

[~,j] = max(abs(f(X)-R)); S = [S X(j)]; % next support point

end

m = m0; S = S0; w = w0; err = err0;

[pol,res,zer] = prz(S’,f(S’),w);

r = rrofeldnahnoitcnuf%;)w,)’S(f,’S,x(laver)x(@

if nl > NOITARETINOSWAL%0

X = XS(S,20); n = dirgrenifothctiws%;)X(htgnel

wt = rotcevtwnoswaL%;)1,n+m(seno
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C = xirtamyhcuaC%;)S-X(/.1

R = stpelpmastaxorppatar%;)w*C(/.)))’S(f*.w(*C(

F = [f(X); f(S’)]; R = [R; f(S’)]; % f and r values

L = f(X).*C;

A = [C; eye(m)]; B = [L; diag(f(S))]; % numer and f*denom rows

for stepno = spetsnoswaLlnekat%ln:1

[~,~,V] = svd(sqrt(wt).*[A B/fmax],0);

c = V(:,2*m);

a = c(1:m); w = -c(m+1:2*m)/fmax; % numer wts, denom wts

R = (A*a)./(A*w);

wt = gnithgiewerevitareti%;)R-F(sba*.tw

wt = wt/norm(wt,inf);

end

r = rrofeldnahnoitcnuf%;)w,w/.a,’S,x(laver)x(@

% [pol,res,zer] = prz(S’,a./w,w); disp(’hi’)

end

xx = TOLPDNARORREETUPMOC%;)]’S;)03,S(SX[(tros

ee = f(xx)-r(xx); err = norm(ee,inf);

if plt

semilogy(m-1,max(err,1e-16),’o’,LW,2,CO,grn)

hold off, subplot(212), co = [0 .45 .74];

if nl > 0, co = [.7 0 .9]; end, plot(xx,ee,LW,.7,CO,co)

s = sprintf(’error: max =%8.1e’,err); ylim(1.5*(err+realmin)*[-1 1])

title(s), grid on, xlabel x

end

end

function XS = STNIOPELPMAS%)p,S(SX

S = sort(S); d = (1:p)/(p+1);

XS = S(1:end-1) + d’.*diff(S);

XS = XS(:);

end

function [pol,res,zer] = prz(xj,fj,wj) % POLES, RESIDUES, ZEROS

m = )nufbehCmorf(%;)jw(htgnel

if any(wj==0)

ii = find(wj~=0); m = length(ii);

xj = xj(ii); fj = fj(ii); wj = wj(ii);

end

B = eye(m+1); B(1,1) = 0;

E = [0 wj.’; ones(m,1) diag(xj)];

pol = eig(E,B); pol = pol(~isinf(pol));

if nargout > = 2

N = @(t)(1./(t-xj.’))*(fj.*wj);

Ddiff = @(t) -((1./(t-xj.’)).^2)*wj;

res = N(pol)./Ddiff(pol);

E = [0 (wj.*fj).’; ones(m,1) diag(xj)];

zer = eig(E,B); zer = zer(~isinf(zer));

end

end

function r = RROFELDNAHNOITCNUF%)jw,jf,jx,zz(laver

z = zz(:); C = )nufbehCmorf(%;)’.jx-z(/.1

r = (C*(wj.*fj))./(C*wj);

r(isinf(z)) = sum(wj.*fj)./sum(wj);

ii = find(isnan(r));

for j = 1:length(ii)

r(ii(j)) = fj(z(ii(j))==xj);

end

r = reshape(r,size(zz));

end

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



AAA RATIONAL APPROXIMATION ON A CONTINUUM A951

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scien-
tific computing community. Code and data that allow readers to reproduce the re-
sults in this paper are available at https://epubs.siam.org/doi/10.1137/23M1570508\#
supplementary-materials.

Acknowledgments. We are grateful for suggestions from Stefano Costa, Daan
Huybrechs, William Johns, Davide Pradovera, Mark Reichelt, Olivier S\`ete, Alex
Townsend, Michael Tsuk, and Heather Wilber. Reichelt and Tsuk are the authors of
the rational fitting functionality in the MathWorks RF Toolbox, based on AAA. We
also benefited from the suggestions of two very knowledgeable anonymous referees.

REFERENCES

[1] A. C. Antoulas, C. A. Beattie, and S. G\"u\u gercin, Interpolatory Methods for Model Reduc-
tion, SIAM, Philadelphia, 2020.

[2] A. Budi\v sa, X. Hu, M. Kuchta, K.-A. Mardal, and L. Zikatanov, Rational Approximation
Preconditioners for Multiphysics Problems, arXiv:2209.11659v2, 2022.

[3] A. Carracedo Rodriguez, L. Balicki, and S. Gugercin, The p-AAA algorithm for data-
driven modeling of parametric dynamical systems, SIAM J. Sci. Comput., 45 (2023),
pp. A1332--A1358.

[4] Y. Chahlaoui and P. Van Dooren, A Collection of Benchmark Examples for Model Reduction
of Linear Time Invariant Dynamical Systems, EPrint 2008.22, Manchester Institute for
Mathematical Sciences, University of Manchester, Manchester, UK, 2002.

[5] W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximations to e - x

in [0,+\infty ) and applications to heat-conduction problems, J. Approx. Theory, 2 (1969),
pp. 50--65.

[6] S. Costa, E. Costamagna, and P. Di Barba, Modelling Permanent-Magnet Excited Uniform
Fields with Rational Approximations, ISEF 2023 (Pavia), submitted.

[7] S. Costa and L. N. Trefethen, AAA-least squares rational approximation and solution
of Laplace problems, in European Congress of Mathematics, A. Hujdurovi\'c, et al., eds.,
European Mathematical Society, 2023.

[8] L. Davis, W. Johns, L. Monz\'on, and M. Reynolds, Iterative stability enforcement in adaptive
Antoulas--Anderson algorithms for \scrH 2 model reduction, SIAM J. Sci. Comput., 45 (2023),
pp. A1844--A1861.

[9] E. Deckers, S. Jonckheere, and K. Meerbergen, Time Integration of Finite Element Mod-
els with Nonlinear Frequency Dependencies, arXiv:2206.09617, 2022.

[10] G. Deng and C. J. Lustri, Exponential asymptotics of woodpile chain nanoptera using nu-
merical analytic continuation, Stud. Appl. Math., 150 (2023), pp. 520--557.

[11] N. Derevianko, G. Plonka, and M. Petz, From ESPRIT to ESPIRA: Estimation of sig-
nal parameters by iterative rational approximation, IMA J. Numer. Anal., 43 (2023),
pp. 789--827.

[12] T. Driscoll, Schwarz-Christoffel Toolbox for Conformal Mapping in MATLAB, version 3.1.3,
2021.

[13] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Press, Oxford,
2014, www.chebfun.org.

[14] S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, and B. Beckermann, Rational minimax
approximation via adaptive barycentric representations, SIAM J. Sci. Comput., 40 (2018),
pp. A2427--A2455.

[15] A. Gopal and L. N. Trefethen, Solving Laplace problems with corner singularities via ra-
tional functions, SIAM J. Numer. Anal., 57 (2019), pp. 2074--2094.

[16] A. Gopal and L. N. Trefethen, Representation of conformal maps by rational functions,
Numer. Math., 142 (2019), pp. 359--382.

[17] I. V. Gosea and S. G\"uttel, Algorithms for the rational approximation of matrix-valued func-
tions, SIAM J. Sci. Comput., 43 (2021), pp. A3033--A3054.

[18] S. G\"uttel, G. M. Negri Porzio, and F. Tisseur, Robust rational approximations of nonlinear
eigenvalue problems, SIAM J. Sci. Comput., 44 (2022), pp. A2439--A2463.

[19] T. Haut, G. Beylkin, and L. Monz\'on, Solving Burgers' equation using optimal rational
approximations, Appl. Comput. Harmon. Anal., 24 (2013), pp. 39--95.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://epubs.siam.org/doi/10.1137/23M1570508#supplementary-materials
https://epubs.siam.org/doi/10.1137/23M1570508#supplementary-materials
https://arxiv.org/abs/2209.11659v2
https://arxiv.org/abs/2206.09617


A952 DRISCOLL, NAKATSUKASA, AND TREFETHEN

[20] A. Hochman, FastAAA: A fast rational-function fitter , in Proceedings of the 26th Conference
on Electrical Performance of Electronic Packaging and Systems, IEEE, 2017, pp. 1--3.

[21] D. Huybrechs and L. N. Trefethen, AAA interpolation of equispaced data, BIT, 63 (2023),
21.

[22] W. R. Johns, Multi Input Minimax Adaptive Antoulas-Anderson Algorithm for Rational Ap-
proximation with Stable Poles, Ph.D. dissertation, Montana State University, 2021.

[23] B. Keith, U. Khristenko, and B. Wohlmuth, A fractional PDE model for turbulent velocity
fields near solid walls, J. Fluid Mech., 916 (2021), pp. A21--1-30.

[24] P. Lietaert, K. Meerbergen, J. P\'erez, and B. Vandereycken, Automatic rational ap-
proximation and linearization of nonlinear eigenvalue problems, IMA J. Numer. Anal., 42
(2022), pp. 1087--1115.

[25] RF Toolbox , MathWorks, https://www.mathworks.com.
[26] E. Moussa, Minimax rational approximation of the Fermi--Dirac distribution, J. Chem. Phys.,

145 (2016), 164108.
[27] Y. Nakatsukasa, O. S\`ete, and L. N. Trefethen, The AAA algorithm for rational approxi-

mation, SIAM J. Sci. Comput., 40 (2018), pp. A1494--A1522.
[28] Y. Nakatsukasa, O. S\`ete, and L. N. Trefethen, The First Five Years of the AAA Algo-

rithm, arXiv:2312.03565, 2023.
[29] Y. Nakatsukasa and L. N. Trefethen, An algorithm for real and complex rational minimax

approximation, SIAM J. Sci. Comput., 42 (2020), pp. A3157--A3179.
[30] D. J. Newman, Rational approximation to | x| , Michigan Math. J., 11 (1964), pp. 11--14.
[31] D. Pradovera, Toward a Certified Greedy Loewner Framework with Minimal Sampling,

arXiv:2303.01015v1, 2023.
[32] Y. Saad, M. El-Guide, and A. Miedlar, A Rational Approximation Method for the Nonlinear

Eigenvalue Problem, arXiv:1901.01188v2, 2020.
[33] H. Stahl, Best uniform rational approximation of ---x--- on [ - 1,1], Russian Acad. Sci. Sb.

Math., 76 (1993), pp. 461--487.
[34] L. N. Trefethen, Near-circularity of the error curve in complex Chebyshev approximation,

J. Approx. Theory, 31 (1981), pp. 344--367.
[35] L. N. Trefethen, Rational Chebyshev approximation on the unit disk , Numer. Math., 37

(1981), pp. 297--320.
[36] L. N. Trefethen, Approximation Theory and Approximation Practice, Extended Edition,

SIAM, Philadelphia, 2019.
[37] L. N. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods

Funct. Theory, 20 (2020), pp. 369--387.
[38] L. N. Trefethen, Numerical analytic continuation, Jpn. J. Ind. Appl. Math., 40 (2023),

pp. 1587--1636.
[39] L. N. Trefethen, Y. Nakatsukasa, and J. A. C. Weideman, Exponential node clustering

at singularities for rational approximation, quadrature, and PDEs, Numer. Math., 147
(2021), pp. 227--254.

[40] A. Valera-Rivera and A. E. Engin, AAA algorithm for rational transfer function approxi-
mation with stable poles, Lett. Electromagn. Compat. Pract. Appl., 3 (2021), pp. 92--95.

[41] R. S. Varga and A. J. Carpenter, On the Bernstein conjecture in approximation theory,
Constr. Approx., 1 (1985), pp. 333--348.

[42] R. S. Varga, A. Ruttan, and A. J. Carpenter, Numerical results on best uniform approxi-
mation of | x| on [ - 1,1], Math. USSR-Sb., 74 (1993), pp. 271--290.

[43] H. Wilber, A. Damle, and A. Townsend, Data-driven algorithms for signal processing with
trigonometric rational functions, SIAM J. Sci. Comput., 44 (2022), pp. C185--C209.

[44] Y. Xue, S. L. Waters, and L. N. Trefethen, Computation of 2D Stokes flows via lightning
and AAA rational approximation, SIAM J. Sci. Comput., submitted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://www.mathworks.com
https://arxiv.org/abs/2312.03565
https://arxiv.org/abs/2303.01015v1
https://arxiv.org/abs/1901.01188v2

	Introduction
	Continuum AAA on <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	[-1,1]?></0:tex-math></0:inline-formula>
	Continuum AAA on the unit circle or disk
	Continuum AAA on the imaginary axis or right half-plane
	Other real and complex domains
	Areas for improvement
	Summary and discussion
	Acknowledgments
	References
	MATLAB and Julia code templates

