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Abstract 

For systems which can be described by ut = Au, with a highly nonnormal matrix or operator A, the spectrum of A may 
describe the behavior of the system poorly. One such operator arises from the one-dimensional wave equation on a finite 
interval with a homogeneous Dirichlet condition at one end and a linear damping condition at the other. In this paper the 
pseudospectra (norm of the resolvent) of this operator are computed in an energy norm, using analytical techniques and 
computations with discrete approximations. When the damping condition is perfectly absorbing, the pseudospectra are 
half-planes parallel to the imaginary axis, and in other cases they are periodic in the imaginary direction and approximate 
strips of finite thickness. The nonnormality of the operator is related to the behavior of the system and the limitations of 
spectral analysis. 
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I. Introduction 

Often in applied mathematics one obtains an initial value problem of the form ut = Au,  where 
each u(t)  is an element of a Hilbert space ~ and A is a linear operator defined on some or all of ~ .  
Formally the solution is given by u(t)  = etAu(O), where e tA is a suitably defined evolution operator, 
i.e., the semigroup generated by A. One way to analyze such a system is to determine A(A), the 
spectrum of A. In particular, if the spectral abscissa tr(A) = sup{Re 2:2 e A(A)} is negative, lie tA ]l 
typically (but not always for infinite-dimensional ~ [1, 15, 25]) decays exponentially as t ~ oo. 

However, spectral analysis may be incomplete. A difficulty arises when the eigenmodes of A are 
not orthogonal in ~ - - t h a t  is, the operator A is not normal  (for simplicity, we assume the spectrum 
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consists entirely of eigenvalues corresponding to a complete set of eigenmodes). If the eigenmodes 
form an ill-conditioned basis, spectral analysis tends to miss short-term behavior patterns in the 
time evolution of the system, because a combination of such modes over a finite time interval need 
not grow or decay like its constituent parts. 

Because sometimes we are concerned only with asymptotic behavior, we can sometimes ignore 
the effects of nonnormality. In other circumstances, however, a knowledge of the asymptotic 
behavior may not be as valuable as it at first seems. Such a situation has been recognized recently in 
the field of hydrodynamic stability [2, 4, 16, 22]. A perturbation to a laminar fluid flow may be 
asymptotically stable according to linear analysis, yet experience transient growth by factors of 
thousands. In some situations it appears to be this linear, nonmodal  growth that triggers the 
transition to turbulence. 

In this paper we present a simple, physically motivated case study of a situation in which 
nonnormali ty renders a spectral analysis incomplete. Our example is the one-dimensional wave 
equation with a Dirichlet condition at one end and a linear damping condition at the other; for 
related work, see [5, 10, 19, 23]. The physics is elementary enough to admit an exact description of 
the system's behavior, which is presented in Section 2. This behavior is compared with the results of 
spectral analysis in Section 3. In Section 4 we consider pseudospectra [21] and show that the 
degree of nonnormali ty is related to the limitations of the spectral analysis. Section 5 discusses the 
properties of various discretizations of the problem. Finally, Section 6 summarizes our results. 

2. Behavior of the system 

Consider the linear wave equation on [0, h i ,  

4 . ( x ,  t) - 4xx(x ,  t) = 0, t / >  0, 

subject to the boundary conditions 

~b(0, t) = 0, 

t) + t) = o. 

x e [0, re], (1) 

(2) 

(3) 

These equations model the vibration of an ideal string with left end pinned and right end subjected 
to damping with real parameter 6. This problem has been studied by Veseli6 as the continuous 
analog of a linearly arranged system of coupled oscillators with dashpot damping at one end [23]. 
More on this connection will be discussed in Section 5. 

An investigation of the time evolution of solutions to (1)-(3) is straightforward. Disturbances 
propagate at unit speed without change except at reflections. Reflection at the left boundary x = 0 
simply inverts the wave. The behavior at x = rt is more interesting; the reflection coefficient is easily 
seen to be 

1 - 6  
R~ = (4) 

1 + 6 "  

In Fig. 1, R~ is plotted against 6. When 6 = 1, the damping becomes critical: R~ vanishes, and the 
energy is zero for t >/2× for any initial condition. This parameter value corresponds to the 
zeroth-order absorbing boundary condition familiar in the numerical solution of PDEs [7]. 
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Fig. 1. Dependence of the reflection coefficient on the damping parameter 6. 

Note that changing the sign of 6 changes R~ to its reciprocal. This is a consequence of a time 
symmetry in (1)-(3), for replacing 6 by - 6  in these equations is equivalent to replacing t by - t .  
Thus, positive values of 6 cause physical damping while negative values actually input energy. 
Another symmetry is that replacing 6 by 1/6 simply changes the sign of R~, i.e., the parity of the 
reflection. Because of these symmetries, we henceforth restrict attention to 6 ~ [0, 1]. 

For any suitably localized initial condition, the amplitude of the solution changes by a factor of 
R~ near each time t + 2nn, where n ~ Z, and 0 < t < 2n. The degree of localization in space of the 
initial disturbance is proportional to the localization in time of its change in amplitude. By 
choosing an initial condition with all its energy near x = n, we can make the transitions arbitrarily 
sharp and make t arbitrarily close to 2n. This description of the system's behavior will be stated 
more formally in the next section. 

3. Spectral analysis 

We now discuss two ways to reformulate (1)-(3) as a first-order linear evolution process on 
a Hilbert space. We then compare the information obtained from the spectrum of the resulting 
operator with the system's behavior. 

To begin, we let 

u = = . ( s )  

U2 ~ t  
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Then 

[0 1 u t = L u ,  L : =  d / d x  ' (6) 

where the domain D ( L )  of L is the dense [9] subspace of ~ = L2[0, re] x L2[0, rc] consisting of 
pairs of absolutely continuous 
boundary  conditions 

u2 (0) = 0, 

Ul(~ ) q- 6U2(g ) = O. 

functions with derivatives in L2[0, g] and which satisfy the 

(7) 
(8) 

The form (6) is sometimes called the symmetric hyperbolic form [8], and is a natural  way to pose 
the problem in the sense that the squared norm on ~ is the energy of the string: 

[lull 2--  f~ Ilu(x)l[~ dx = f ]  ([~bx(X)l 2 + [~)t(x)12)dx. (9) 

The second reformulation involves unwrapping (6)-(8) to obtain a first-order problem involving 
just one independent variable, but on a periodic domain of length 2rt rather than re. We first define 
the characteristic variables 

5I' 11 v =  1 - 1  u" (lO) 

The boundary  conditions become 

vl(O) --- v2(O), (11) 

v l (~) = - R~ v2 (~c). (12) 

Now we define the scalar function w e L2[  - rt, rt] by 

~ v 2 ( - x ) ,  - r t ~ < x ~ < 0 ,  (13) 
W(X) [ V I(X), 0 ~ X ~ ~. 

Condit ion (11) ensures that w is differentiable with respect to t and x at x -- 0, and it is easily 
verified that 

wt = L w ,  L:  = d / d x .  (14) 

Condit ion (11) is now implicit and (12) becomes 

w(rt) = - -  R ~ w (  - r0; (15) 

that is, the domain is periodic and waves which reach x = - n are wrapped back to x = re. It is 
easily checked that 

Ilwl,2---~ ,w(x)l 2 dx--- /[ul, 2, (16) 
d -  7~ 

and so the two formulations are unitarily similar. In particular, this means that the spectrum and 
norm of the resolvent are the same for L and L. For  the most part, in what follows we use the form 
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Fig. 2. Exact solution operator norm (solid) and eigenvalue envelopes (dashed) for 6 = 0.75. The lower envelope is given 
by (20) and the upper envelope is a constant multiple of the lower one, given by Eq. (26) in Section 4. Here the damping 
parameter is 6 = 0.75; with 6 = 1, the norm drops to 0 at t = 2ft. 

(6)-(8), because it does not exploit the special form of the boundary conditions and thus is more 
readily generalized. 

The discussion of the last section implies that the solution operator for (6), e tL, satisfies 

lie 'L II = IR=I L'/2~J, (17) 

where L" J is the floor (truncation to integer) function. 3 Fig. 2 displays this stairstep evolution. For 
6 = 1 the norm is one for t < 2re and zero thereafter. 

The spectrum of L is easily determined. From (6) and (7) we see that if u is an eigenfunction it 
must have the form 

[ c o s h 2 x ]  
ua = L sinh 2x J (18) 

for values of 2 to be determined by the remaining boundary condition. From (8) we conclude that 
for 6 = 1, the spectrum is empty, and for 6 ~ 1 the spectrum is the set of eigenvalues 4 

1 1) 
) ~ , = ~ - ~ l o g ~ - - ~ ) +  n + ~  l (19) 

3 Notwithstanding that L is unbounded and defined only a proper subspace of pug, the solution operator exp(tL) is 
a bounded operator on all of Yf for any t >~ 0 and ~ />  0. This is a standard situation in the theory of semigroups; see [14]. 
We use the suggestive exponential notation even though the semigroup cannot be defined simply by a power series. 

4 In the next section we derive a bound for the norm of the resolvent which verifies that the point spectrum derived here 
is the entire spectrum. 
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for all n e 77. The spectrum is plot ted in Figs. 3 and 4 for two values of 3. The fact that  infinitely 
many  eigenvalues have the same real part  allows the steps in Fig. 2 to repeat indefinitely. 
Otherwise, the solution would eventually be domina ted  by finitely many  eigenmodes and lie tL II 
would necessarily smooth  out  as t ~ ~ .  
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In one respect the spectrum of L corresponds exactly to the behavior  of e tL. Observe that  

/ t  6 - 1 \  
le~"'[ = exp ~-~log~-T--  ~ ) = IR~I ~/2~, (20) 

which is clearly related to (17). In Fig. 2 we see that  (20) is a smooth  lower bound  for lie ~L I[, having 
identical asymptot ic  behavior. Pu t  simply, the spectral abscissa of L coincides with the exponential 
type of etL: 

a(L) = lim t -  1 log lie *L II- (21) 
t---~ o~ 

Note  that  both  sides of (21) are - ~  when 6 = 1. 
Fig. 2 also makes it obvious that  there is more  to [letLII than is described by (20). The step 

behavior  results from transient deviations f rom the asymptot ic  trend. As we shall see in the next 
section, these transient behaviors are due to the nonnormal i ty  of L. 

4. Pseudospectral analysis 

Let A be a closed linear opera tor  on a Banach space X with norm I] " [[, and let A(A) and p(A) 
denote  the spectrum and resolvent set of A, respectively. For  any e > 0, we define the e-pseudospec- 
trum of A by 

A~(A) = {2 6 p(A): I1(~I - A ) - '  [I t> e-'}wA(A), (22) 

and we set Ao(A) = A(A). Intuitively, the resolvent no rm is infinite in the spectrum, and large in an 
e-pseudospectrum for small e. Another  characterization is 

AAA) = closure{2 e C : 2 ~ A(A + E) for some lIE II ~< e}. (23) 

It is well known  that  if A is normal,  then AAA) is the union of e-balls a round  all points in A(A) (see 
[9, p. 277]). The degree to which the pseudospectra  are larger than this is a measure of the 
nonnormal i ty  of A. 

Fig. 3 -5  show the boundaries  of several pseudospectra  of L for three values of 6. The 
computa t ions  which produced  these figures are discussed in Section 5. Note  that  when 6 is not  near 
1, the degree of nonnormal i ty  is mild. Recall that  [R~[ ~ 1 as 6 ~ 0, and the smooth  spectral 
approx imat ion  in (20) becomes increasingly good. In fact, by finding the adjoint  of L we see that  
L is normal  in this limit. On  the other hand,  for 6 ~ 1, the reflection coefficient is approximately  
0 and the spectral approximat ion  is not  so good. Fig. 4 confirms that  L is further from normal  in 
this situation, especially in the left half-plane. With 6 = 1, the norm of the solution to (6) drops to 
zero in a finite time, and the spectrum is empty. Fig. 5 shows that  the operator  is highly nonnorma l  
in this case, much  more  so than  for even nearby 6. (Note the different contour  levels in this figure.) 

One way to quantify the degree of nonnormal i ty  for this family of operators  is to compute  the 
condi t ion number  of a basis of eigenfunctions. To do this it suffices to find the condi t ion number  of 
a t ransformat ion M : ~  ~ ~ that  maps  the eigenfunctions (18) onto  an or thogonal  basis. Since 
L is normal  when 6 = 0, the eigenfunctions in this case provide a natural  choice for the or thogonal  
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basis. The mapp ing  is then 

Fcosh~x  s i n h ~ x ]  
M u  = k sinh ax cosh a x J  u, (24) 

where 0~ = Re2 ,  = log(]R~[) /2n .  It is s traightforward to show that  

 Fcos  x sin   l) , 
to(M) = sup to2 = - -  (25) 

-,,~to,,q \ [_ sinh ~x cosh ~x R~' 

where R~ is the reflection coefficient given by (4). This is a particularly clean expression of the 
degree of nonnormal i ty  of L as 6 ranges from 0 to 1 (R~ ranges f rom 1 to 0). We can now explain the 
upper  envelope for the solution no rm plotted in Fig. 2; it is 

~(M) [e~"~t = [R~[ t/2n - 1. (26) 

A more  detailed quantif icat ion of the nonnormal i ty  is the relative size of each e-pseudospectrum, 
which we define as 

Re-diameter  of A J L )  (27) 
v(6, e) = 2~ 

Here "Re-diameter" means the extent of the pseudospec t rum in the real direction of the complex 
plane. Clearly, v(0, e ) =  1 and v(1, e ) = o o  for all e, corresponding to the normal  and strongly 
nonno rma l  cases, respectively. Fig. 6 shows v for various values of 6 and e. In the limit E ~ O, v(6, e) 
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becomes the condition number of the eigenvalues, 5 which can be computed exactly as 

IR~I- 1/IR~I 
v(~, o) = (28) 

2 log I R~ [ 

When IR, 1-1 is large, (25) is larger than (28) by a factor which is asymptotically -21oglR~l, 
suggesting an interaction between eigenvalues. Correspondingly, as e increases, v undergoes 
a temporary increase (the ripple in the surface of Fig. 6), indicating that the pseudospectra reflect 
some coupling across individual eigenvalues. 

Some of the features evident in Figs. 3-5 can be derived analytically. The following theorem 
summarizes this information. 

Theorem 1. For 0 < 6 <~ 1, the numerical range of  L is the closed left half-plane, and for ~ = 0 it is 
the imaginary axis. Consequently, 

II (2I - L ) -  1 II ~< (Re 2) -  1, Re 2 > 0. (29) 

For 0 < 6 < 1 the spectrum of  L is 9iven by (19). The resolvent norm is invariant under translations by 
iZ and satisfies 

1 O(e2~Re;), 11(21--L)-Xll >/ 1 - -~-~ -IRe21-1 + R e 2 ~ - ~ ,  (30) 

( ~ )  ) '  11(2I -g) - l l l  ~< 1 + .IRe21-1 + R e 2 ~ - ~ .  (31) 

5 I f 2  ~ A(A) and  u a n d  v are  uni t  e l emen t s  such  tha t  Au = 2u a n d  A*v = 7.v, the  cond i t i on  n u m b e r  of  2 is x(2) = 1/(u, v). 
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For 6 = 1 the spectrum of L is empty. The resolvent norm is invariant under all imaginary translations 
and satisfies 

e2nlRe)~r 
11(21 - L) -1 [I - - -  + o ( I g e 2 1 - 1 ) ,  Re2 --*-oo.  (32) 

21Re21 

Proof. To determine the numerical range, we compute 

(u, Lu) = (u'2ul + ul u2)dx (33) 

;o = [ U 2 U l ] ~ )  "Jr- ( -- W22U'l + U'lU2) dx (34) 

6lu2(n)l 2 + f~ (u-~u2 - W22u'1) dx,  (35) 

where the last line is due to (7)-(8). Note that the integrand is imaginary. Restriction to Ilull = 1 
clearly does not limit the choice of u2(n), and because of the derivative of Ul in the integrand, any 
imaginary value can be achieved. Thus, the assertions about the numerical range are proved. 
Inequality (29) is a standard consequence [14, p. 12]. Note that for any value of 3, the numerical 
abscissa, or maximum real part of the numerical range, is zero. This explains the slope of the steps 
in Fig. 2. 

Now we establish the translation invariances. Let Sa be the family of unitary operators on 
defined by 

F cos/3x i sin~Sx] 
Sau = L i sin/3x cos/3x J u. (36) 

This operator is motivated by the eigenfunctions (18), because Sp u~ = ux + ip. In general, Sp u will not 
satisfy the boundary conditions (7) and (8) even when u e D(L), but they are satisfied whenever 
/3 = n e 7/. Moreover,  

11((2 + in)I - L )S ,  ull = 11(21 - L)ull .  (37) 

From this it is easily seen that the resolvent norm, and hence the pseudospectra, are invariant 
under translations of i7/, just as are the spectra from (19). 

The conclusion is stronger in the critically damped case. When 6 --- 1, Sa maps D(L) into D(L) for 
any value of /3 e N. Hence, the pseudospectra of L are invariant under all purely imaginary 
translations. 

For  the expressions (30)-(32) in the left half-plane we parallel the development in [18]. It is 
convenient here to use L, given by (14) and (15), which is unitarily similar to L. 

First we decompose (21 - / ~ ) -  1 into two parts: 

(21 -- /~)-1 = R1 + R2, (38) 

where R a is given explicitly by 



T.A. Driscoll, L.N. Trefethen/Journal of Computational and Applied Mathematics 69 (1996) 125-142 135 

The operator  Ra solves (21 - / ~ ) w  = f  without the boundary  condition (15), and (39) results from 
the Green's function for this problem. Now R a f  is the restriction to l - n ,  rt] of the convolution 
f .  9, where f is extended by zero to ( -  oo, ~) ,  and 9(s) = e as for s > 0 and is zero for s < 0. By 
Fourier  transformation, 

liRa II ~< sup I~(~)1 

= supl(i~ - A)-al 

= IRe 21- a (40) 

The role of R2 is to make the result of (38) satisfy the boundary  condition (15). Since (21 - / ~ )  
annihilates e zx, we let 

(R2f) = ae zx (41) 

for a constant a. F rom (15), (38), and (39) we see that 

a = (e ~ -- R~e -:'~) - I ( R ~ ( R l f ) (  - re) - ( R l f )  (r~)) 

= - - ( 1 - -  R~e-Z; : ) - l  f ~  e-~Sf(s)ds. (42) 

To bound the integral in (42) we use the Cauchy-Schwarz  inequality, and in choosing f we may 
make this bound sharp. Then from (41) and (42) we find 

e 2nRe'~ -- e -  2nRe2 

IIR211 = 2Re2(1 - R~e -2~) " (43) 

Finally, (30)-(32) follow from the inequalities 

l liRa It - IIR2 III ~< liRa + 82 II ~< liRa II + 1182 II. [ ]  

For  6 far from 1, inequalities (29) and (31) confirm the relatively mild degree of nonnormal i ty  
observed in Fig. 3. For  6 ~ 1, the lower bound (30) guarantees that the pseudospectra penetrate 
much farther into the left half-plane, as can be seen in Fig, 4; however, each pseudospectrum is still 
bounded on the left and right. For  6 = 1 the estimate (32) in the left half-plane explains the 
unboundedness of the pseudospectra as Re 2 ~ - o o  and the spacing of the contours in Fig. 5. 
Moreover,  it follows that L must be nilpotent in the sense that e tL = 0 for t /> 2re. In fact, we have 
the following general theorem relating nilpotency of the solution operator  to the growth of the 
resolvent norm at infinity. 

Theorem 2. Suppose A is a linear operator which 9enerates the Co semigroup 6 e tA on the Hilbert 
space H. Then etA= 0 for all t >~ to if and only if the spectrum of  A is empty and 
H(2I -- A) -a[I = 0(e-t°ge'~) as Re2 ~ - ~ .  

6The term Co semigroup means that for each x~H, e'ax is continuous in H as a function of t. By the 
Hille-Yosida-Phillips theorem, this is equivalent to A being closed, D(A) being dense in H, and a generalization of the 
bound (29); see [14]. 
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Proof. We prove this theorem with an application of the Paley-Wiener  theorem for Fourier  
transforms of functions with compact  support [6]. We start with the Laplace transform 

(21 - A) -  I x = . fo  e-tZetA x dt, (44) 

valid for all x E H (see [14, p. 20]). Since e 'A is Co, there exist real M and ~o such that IIe tA II ~< Me '°' 
for all t /> 0 (by the uniform boundedness principle; see [14, p. 4]). Choose 7 > ~o and fix x and y in 
H with II x [I = [I y II = 1. N o w  by (44), 

([(y+2)Z-A]-Xx, y)=(foe-'%-t;'e'Axdt, y ) 

= f o e  ~ (e - ';' e tA X, y) dt 

=: f f  e-t~f(t)dt, 
where the scalar function f ( t )  is in L 2. The equivalence of the first two integrals is easily seen 
because etax is continuous in H as a function of t. We now recognize 
F(¢) :=  ([(7 + i ~ ) I -  A ] - I x ,  y) as the Fourier  transform of f ,  and the Paley-Wiener  theorem 
asserts that f ( t ) =  0 for all t > to if and only if F is entire and IF(~)I ~< Ce I¢l~°. By a Phrag- 
m6n-Lindel6f  theorem, this latter bound is equivalent to 

IF(i)[ ~< Ce t°Im¢, Im ~ > 0, 

which in turn is equivalent to 

1((21 - A ) - l x ,  y)l <<. Ce to(Re2--),), Re2 < 7. 

The conclusion f ( t )  = 0 for t > to can be extended to t = to by the Co property. Since x and y are 
arbitrary unit elements, the proof  is complete. []  

5. Discretizations 

The bounds derived in Theorem 1 are not sharp enough to produce the plots of Figs. 3-5.  These 
plots were made by discretizing the operator  L to obtain a matrix A whose pseudospectra can be 
computed numerically via the singular value decomposition. It is presumed, on the basis of 
numerical evidence, that as the number  of points in the discretization is increased, the pseudos- 
pectra of the matrix converge to those of the operator  in the sense of (nonuniform) convergence of 
II (2I - A) - 1 II for each 2 ~ p(L). 

One physically appealing discretization of a continuous string is the so-called loaded string [11], 
in which the mass is divided into equal lumps of mass m spaced evenly at a distance h apart. 
Suppose that the tension in the string is z and that the vertical displacements ui, i = 0 . . . .  , N, of the 
masses are small. Then Newton's  law in the interior of the string is 

"C 
mfii = ~ (ui- 1 -- 2ui + u/+ 1 ), (45) 
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where i = 2 , . . . ,  N - 1. If the mass density p = m/h  is fixed as h ~ 0, then 

p f i i =  ~ ( u i + l -  2Uih 2 q- Ui-1)  . (46) 

Since the right-hand side of (46) is just a second-order finite difference, in the limit h --. 0 we recover 
the wave equation. The normalization in (1) requires that p = ~. 

We still have boundary  conditions to consider. At the left end of the chain we require Uo = 0, 
which corresponds to (7). At the right end we assume the existence of a linear dashpot that provides 
a damping force of size 7fiN. Then 

mi l s  = phiiN = --  z h - 7ziN, (47) 

which becomes 

r(uN)x + 7(uN)t = 0 (48) 

in the limit h ~ 0. Comparing this to (8), we recognize that 6 = 7/r. 
Now suppose that instead of tension in the string supplying the forces between vertically 

displaced masses, the masses are connected to one another  by springs of force constant x and move 
horizontally (along the length of the chain). It is easy to see that the resulting equations are 
equivalent to (46) and (47) provided that t¢ = T/h. In matrix form they are 

mfi + 7Cfi  + ~cKu = O, 

where u = [Ul -" uu] T and 

C = diag(0, 0,. . .  ,0, 1), K = 

2 - 1  

- 1  2 - 1  
' . .  " , •  

• " ° 2 - -  

- 1  1 

(49) 

(50) 

v = ANY.  (52) 

0 

= ff_  - Z c  
- -  ~ / m  P m 

We now follow Veseli6 [23] and define variables which transform (49) into a first-order system. Let 
K = p p X  be a Cholesky factorization and set 

,T 0]E: 1 v = x//~ I . (51) 

As before, the variables have been chosen so that IIv II ~ is the total energy of the system• Now 
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Using the relat ionships a m o n g  the parameters  we have 

A N = N I  0 PT 1 
rr -- P - 6 C  (53) 

We call the 2N x 2N mat r ix  AN the order  N loaded-s t r ing discret izat ion of the con t inuous  opera tor  
L. In light of  (46) and  (47), it is perhaps  not  surprising tha t  AN is also the matr ix  tha t  results by  
tak ing  appropr ia te  finite-difference approx imat ions  to the differentials in (6) and  imposing the 
b o u n d a r y  condi t ions  (7) and  (8) by row and  co lumn manipula t ions .  
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Fig. 7. Pseudospectra A,(Au) of the loaded-string discretization (53) with N = 16 and h = 0.99. Values of e are (inner to 
outer) 10 -°'6, 10 -°4, 10 -°'z, 10 ° on the top, and additionally 10 -°8 . . . . .  10-1.4 in the detail on the bottom (cf. Fig. 4). 
The eigenvalues of L are marked by dots and those of AN are marked by circles. 
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Unfortunately, the spectra and pseudospectra of As converge to those of L rather slowly as 
N ~ .  Fig. 7 shows the pseudospectra of AN for 6 = 0.99, near the critical value, with N -- 16. The 
agreement with Fig. 4 is unimpressive. Moreover, the results are virtually identical for ~ = 1, in 
contrast to the behavior for the exact operator L. 

To improve the accuracy one might try more general mass, damping, and stiffness matrices in 
(49). Veseli6, for example, has shown [24] that these matrices can be constructed to yield any 
predetermined set of eigenvalues. Instead, we choose to work directly from (6)-(8) using Chebyshev 
differentiation matrices for the derivatives in place of finite differences. A similarity transformation 
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Fig. 8. Pseudospect ra  A~(Au) of the Chebyshev  spectral  discret izat ion with N = 16 and  6 = 0.99. Values of e are 
10-1.6, 10-1.2 . . . . .  10 ° on  the top  and  the same as those of Fig. 4 in the detail  on  the bot tom.  There  are two outlying 
eigenvalues of AN not  shown. 
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Fig. 9. Pseudospectra A~(AN) of the Chebyshev spectral discretization with N = 16 and 6 = 1. Values of e are 
10 -7, 10 -6 . . . . .  10 ° on the top and 10 -8, 10 -6 . . . .  ,10 ° in the detail on the bot tom (cf. Fig. 5). There are two outlying 
eigenvalues of AN not shown. 

using a weight matrix is needed so that the 2-norm of the result is the correct approximation to (9); 
see [16] for details. Figs. 8 and 9 show the results for N = 16. The agreement is far better than for 
the loaded string. Note that the 6 = 1 case is now qualitatively different, as required, and the 
properly spaced half-planes are well approximated. 7 

7 See [18] for another comparison of the pseudospectra of an operator  with those of its finite-difference and spectral 
discretizations. 
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One problem with discretizations is unavoidable: for each N there is an upper limit on the 
frequency of waves which are well resolved. So, whereas in the continuous case the reflection 
coefficient R~ is the same for all the eigenvalues, in the finite-difference model I R~ I approaches 1 for 
the modes having wave number near the maximum on the grid. As a result, the high-frequency 
eigenvalues of the discretization are quite close to the imaginary axis, and it would be impossible to 
use these matrices to produce a time evolution plot such as Fig. 2, at least without some form of 
high-frequency filtering. The Chebyshev method performs well farther from the real axis but 
ultimately has the same shortcoming. Fortunately, in this case the pseudospectra are periodic in the 
imaginary direction, so it suffices to compute them at well-resolved frequencies only. The pseudo- 
spectra of L in Figs. 3-5 were computed in the strip 0 <~ Im z ~< 1 with Chebyshev discretizations 
based on N ~ 50. 

6. Conclusion 

Table 1 summarizes the information gained about the behavior of the system (6)-(8), as 
measured by II etL I1, through pseudospectral analysis. An eigenvalue analysis would completely 
reveal only the first line of the table, dealing with the long-time trend of II e~L I1. The behavior over 
shorter time scales is not captured by the spectrum because L is not normal (Theorem 1). Indeed, in 
the most nonnormal case ~ = 1 the spectrum is empty, yet the pseudospectra are still meaningful 
and can be used to predict the behavior of the evolution operator (Theorem 2). Discretizations of 
the continuous problem exhibit similar amounts of nonnormality. 

Eigenvalue analysis can mislead or fail for the same reasons in more complicated and physically 
interesting problems. One example arises in hydrodynamic stability, as mentioned in the Introduc- 
tion. Others include magnetohydrodynamics [3], the stability of numerical methods for partial 
differential equations [17, 20], and the convergence of iterative methods for nonsymmetric linear 
systems of equations [12, 13]. We view the present paper as a case study to aid the development of 
methods for these and other applied problems. 

Table 1 
Summary of relationships between the pseudospectra and the behavior of the system 
studied in this paper 

System behavior (lie tL II ) (Pseudo)spectral information 
(H(2I - L ) -  X ll) 

Asymptotic decay rate Spectral abscissa (21) 
Recurrence of steps Translation invariance (19), Theorem 1 
Height of steps Condition of eigenmode basis (25) 
Slope of steps Numerical abscissa Theorem 1 
Compact support (6 = 1) Exponential growth rate Theorem 2 
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