
Numerical Algorithms26: 77–92, 2001.
 2001Kluwer Academic Publishers. Printed in the Netherlands.

A Padé-based algorithm for overcoming the Gibbs
phenomenon

Tobin A. Driscolla,∗ and Bengt Fornbergb,∗∗
a Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
b Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

Received 11 May 2000; revised 4 July 2000
Communicated by C. Brezinski

Truncated Fourier series and trigonometric interpolants converge slowly for functions with
jumps in value or derivatives. The standard Fourier–Padé approximation, which is known
to improve on the convergence of partial summation in the case of periodic, globally ana-
lytic functions, is here extended to functions with jumps. The resulting methods (given either
expansion coefficients or function values) exhibit exponential convergence globally for piece-
wise analytic functions when the jump location(s) are known. Implementation requires just
the solution of a linear system, as in standard Padé approximation. The new methods compare
favorably in experiments with existing techniques.
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1. Introduction

Approximation of an analytic, periodic function by Fourier partial sums or trigono-
metric interpolants is highly effective. Such approximations converge spectrally (that is,
exponentially in the amount of data used). On the other hand, the difficulties in using
these methods to represent a nonsmooth function are notorious. A discontinuity causes
the Gibbs phenomenon, which has two important consequences for the Fourier partial
sum of lengthN :

(1) failure to converge at the jump, and

(2) pointwise convergence elsewhere at the rate O(N−1).

More generally, if the functionf and its derivatives up to orderp − 1 are continuous,
but f (p) is discontinuous (i.e.,f has ajump of orderp), the global convergence rate is
O(N−p). Our goal in this paper is to describe methods that
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(1) exhibit global spectral convergence for piecewise analytic functions, and

(2) improve on straightforward summation even in the periodic, globally analytic case.

Methods that improve convergence for nonsmooth functions require knowledge of
the locations of any jumps in value or derivative. This information may be immediately
available in some situations, such as the Fourier analysis of smooth but nonperiodic data.
Gottlieb and Shu [11] describe one spectral method exploiting this information. They
project the Fourier partial sum onto a space spanned by Gegenbauer polynomials. The
associated weight functions increasingly emphasize information away from the irregu-
larities as the number of included modes grows. One can also try “subtracting off” the
jumps from the Fourier data [6,9,13,14]; this additionally requires knowledge of the sizes
of the jumps in value and in derivatives. For situations in which no advance knowledge
of the singularities is given, both locations and strengths can be estimated by nonlinear
optimizations [2,6,13]. An approach based on conjugate series is detailed in [10].

Our methods are based on Padé approximation. The starting point is theFourier–
Padé(FP) approximation [5,8,12,16] for a truncated Fourier series, which transforms the
dependent variable and converts the Fourier coefficients into Padé approximants in the
complex plane. By itself, this technique achieves spectral convergence away from jumps
and improves the convergence for analytic functions. It does not, however, eliminate the
Gibbs overshoot – although it does reduce it to 2.5% [16].

After considering the source of the difficulty created by jumps, we introduce a
singular Fourier–Padé(SFP) approximation that achieves spectrally accurate approxi-
mation throughout the interval. This method augments the Padé process to allow more
efficient representation of the generic form of singularities. To obtain global conver-
gence, one need know only the locations of jumps.

A closely related problem occurs when equispaced function values, rather than ex-
act Fourier coefficients, are given. In this case the discrete Fourier coefficients computed
by the FFT are contaminated by aliasing error, which can mask the singularity informa-
tion that the exact coefficients hold. Instead of working with these coefficients, we adapt
the SFP technique to rational interpolation.

All of the methods we describe reduce to linear matrix problems that are easily
and quickly solved using standard algorithms. In this work we aim only to describe the
computational procedures, implementation, and experimental performance, and do not
present any theoretical error analysis.

2. Notation and test examples

We are concerned with approximation of a functionf , defined over[−π, π), as-
sumed to be piecewise analytic with at most a finite number of jump locations. We do
not assume thatf is 2π -periodic; nevertheless, we will be making use of information
from the Fourier series off as if it were extended periodically. A lack of periodicity is
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thus equivalent to discontinuities inf, f ′, f ′′, . . . at x = ±π . In sections 3 and 4 we
assume that we are given 2N + 1 exact Fourier coefficientsc−N, . . . , cN , where

f (x) =
∞∑

n=−∞
cne

inx, cn = 1

2π

∫ π

−π
f (x)e−inx dx. (2.1)

In section 7 we shall instead assume that we know 2N discrete values off at evenly
spaced points in[−π, π). In either case our goal is to accurately reconstructf through-
out the interval.

If f ∈ Cp−1[−π, π) andf has at least one jump of orderp, then the Fourier partial
sum defined by

fN(x) =
N∑

n=−N
cne

inx (2.2)

Table 1
Test functions for the methods of the paper.

fa(x) = exp(sin(3x) + cos(x)) analytic and periodic

fb(x) = |x|
π

continuous and periodic, with first-order jumps at±π and 0

fc(x) = 1

π
max{0, x} first-order jump at 0 and jumps of order zero and one at±π

fd(x) = exp(sin(2.7x)+ cos(x)) analytic but nonperiodic (jumps of all orders at±π)

Figure 1. Test functions listed in table 1.
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has an error of approximation satisfying

‖f − fN‖∞ = O
(
N−p

)
. (2.3)

If f is not continuous, the partial sums converge to the average off from the left and
right. We would like to improve this error to beexponentialinN , including the one-sided
limits at the jump locations.

We will be using the four test functions listed in table 1 throughout the paper to
study a variety of situations. They are pictured in figure 1.

Figure 2. Smoothing of error curves. The true error curve on a log scale (left) has many cusps that theoret-
ically extend to−∞. We extract the approximate locations of maxima (dots, left and center) and connect

them to form an envelope (center and right). This envelope is what appears in all error graphs.

Figure 3. Error envelopes of Fourier partial sums forN = 8, 16, 24, 32. (The points shown represent local
maxima of the errors, and a spline is used to interpolate these values.) Whenever a jump is present, the

convergence is globally slow.
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The errors of partial sums and other approximations tend to cross zero frequently
in the interval[−π, π), and they vary over many orders of magnitude asN changes.
To display such errors over the interval, we use a logarithmic scale with a smoothing
technique illustrated in figure 2. The curves are sampled at 257 points, and discrete
local maxima are picked out. These maxima are connected to form an envelope which
represents the true size of the local error. For all figures which display such error curves,
we are really displaying these envelopes.

Figure 3 shows the errors of the test functions’ Fourier partial sums for vary-
ing N . For the analytic, periodic functionfa, the convergence is spectral. In the
other cases, the convergence is globally very slow and not occurring at all at the
jumps.

3. Fourier–Padé

We define the new variablez = eix, transforming the interval[−π, π) to the unit
circle. The Fourier expansion (2.1) becomes a Laurent expansion inz which can be split
into two parts:

f (z) =
∞∑

n=−∞
cnz

n =
∞∑
n=0

′
cnz

n +
∞∑
n=0

′
c−nz−n = f +(z)+ f −

(
z−1

)
, (3.1)

where the primed sums indicate that the zeroth term should be halved. Iff is real, then
c−n = c̄n, and one need only work withf + in practice.

Note thatf + and f − are expressed as Taylor series at zero and infinity, re-
spectively. This naturally suggests replacing truncated Taylor polynomials with
Padé approximants, which converge much more rapidly in general. Specifically,
we seek four polynomialsp+(z), q+(z), p−(z), q−(z), each of degreeN/2, such
that

p+(z)− q+(z)f+(z) = O
(
zN+1

)
, z→ 0,

p−(z)− q−(z)f−(z) = O
(
zN+1

)
, z→ 0.

(3.2)

(Technically, the polynomials may not have degreeN/2, but we will not be concerned
with such Padé degeneracies.) If such polynomials can be found, theFourier–Padé(FP)
approximant tof is

f (x) ≈ p+(z)
q+(z)

+ p
−(z−1)

q−(z−1)
= p+(eix)

q+(eix)
+ p

−(e−ix)

q−(e−ix)
. (3.3)

Figure 4 displays the errors of Fourier–Padé approximants for the test functions
of figure 1. We observe dramatic improvement over the Fourier partial sums of fig-
ure 3. Even for the analytic functionfa, the errors have been significantly reduced.
In the other cases, spectral convergence has been achieved, except at jumps. A Gibbs
phenomenon still occurs at a jump, although the magnitude of the overshoot is about
2.5% instead of the usual 9% [16]. However, unlike the case with Fourier partial
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Figure 4. Error envelopes of Fourier–Padé approximants forN = 8,16, 24, 32. At jumps, convergence is
not occurring. Elsewhere, however, spectral convergence is observed. Compare to figure 3.

sums, the convergence is not degraded globally. (In fact, it was shown by Brezin-
ski [3] that FP-type approximants do converge faster at ordinary points than the partial
sums.)

The fundamental limitation of the Fourier–Padé method is that irregularities inf

introduce features inf + andf − that Padé approximations do not handle well. Specif-
ically, the use of poles to approximate branch cuts is inefficient. One general technique
for better approximating branch cuts is thequadratic Hermite–Padémethod [1,4,15],
in which square-root singularities complement the usual Padé poles. However, as we
shall soon see, the branch cuts inf + andf − are logarithmic, not square-root, in nature.
Our experiments indicate that a Fourier–Hermite–Padé method improves only slightly
on standard FP.

4. Singular Fourier–Padé

To analyze what is holding back the Fourier–Padé method, we consider the sim-
plest example of a jump, the nonperiodic functionf (x) = x. (Jumps at arbitrary loca-
tions can be analyzed similarly.) In thez variable, the Laurent splitting defined in (3.1)
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becomes

f +(z) = −i

(
z − z

2

2
+ z

3

3
− · · ·

)
= −i log(z+ 1),

f −(z) = i

(
z − z

2

2
+ z

3

3
− · · ·

)
= i log(z + 1).

(4.1)

Note thatf +(z) + f −(z−1) = −i log(z) = x, as required. By the linearity of the
Fourier transform, every zeroth-order jump in a genericf is represented by a logarith-
mic singularity inf + andf − at the conjugate points on the unit circle corresponding
to the location of the jump. A multiplicative constant adjusts the size of the jump. This
logarithmic singularity on the unit circle is very difficult for the Padé approximants to
simulate. More generally, a function with jumps in derivatives of all orders atx = ±π
can be seen to have

f ±(z) = R±0 log(z+1)+R±1 (z+1) log(z+1)+R±2 (z+1)2 log(z+1)+· · ·+g±(z), (4.2)

whereg±(z) is analytic nearz = −1. (We use the± superscript when either the an-
alytic or co-analytic part could be substituted.) The coefficientsR±0 , R

±
1 , R

±
2 , . . . are

respectively associated with jumps inf, f ′, f ′′, . . . .
Suppose we know in advance the location of an irregularity atz = −1 (i.e.,x =

±π ), although not the sizes or orders of any jumps there. Rewriting (4.2) as

f ±(z) = log(z + 1)g±1 (z)+ g±2 (z) (4.3)

suggests that we replace (3.2) by

p±(z)
q±(z)

+ r±(z)
q±(z)

log(z + 1) = f ±(z)+O
(
zN+1

)
(4.4)

for polynomialsp±, q±, andr± (assumingq±(0) 6= 0). We call the resulting approxi-
mation thesingular Fourier–Padé(SFP) approximant. The choice of acommondenom-
inator for the analytic and logarithmic parts is algorithmically significant; this issue and
the assignment of the polynomials’ degrees is discussed in section 5.

In general, if singularities are located atζ1, . . . , ζs = eixs on the unit circle, the SFP
method uses the approximations

p±(z)+ r±1 (z) log

(
1− z

ζ±1
1

)
+ · · · + r±s (z) log

(
1− z

ζ±1
s

)
= q±(z)f±(z)+O

(
zN+1).

(4.5)
The logarithms in this formula are understood to use the principal branch; their argu-
ments have been manipulated to ensure that the branch cuts point away from the origin.
If s = 0, the SFP method is just the standard Fourier–Padé method. Dividing (4.5)
through byq±(z) produces the needed approximation tof ±.

We defer application of the SFP method to our test functions until section 8,
in which SFP is compared to other methods for Fourier series of functions with
jumps.
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5. Algorithmic description

We take the most straightforward approach to computing the polynomial coeffi-
cients needed in the SFP method. Rewriting (4.4) (with some superscripts dropped for
clarity), we have

p(z)+ r(z) log(z + 1) = q(z)f ±(z)+O
(
zN+1

)
. (5.1)

Both log(z + 1) andf ±(z) have Taylor expansions known to orderN . The resulting
equation turns out to be a linear system for the polynomial coefficients. The choice of a
common denominator in (4.4) was crucial to the linearity.

Rescaling all the polynomialsp(z), q(z), andr(z) by a constant leaves (5.1) un-
changed. Designating the degrees of the polynomials bynp, nq, andnr , respectively,
we, therefore, must havenp + nq + nr = N − 1 in order to make the coefficients
well-determined.

Note thatq(z) andr(z) are determined by the terms of order greater thannp alone.
Thus, we seek a solution to [

C −L][q
r

]
= 0. (5.2)

HereC is the(nq + nr + 1)× (nq + 1) Toeplitz matrix
cN/2+1 cN/2 . . . c1

cN/2+2 cN/2+1 . . . c2
...

...
...

cN cN−1 . . . cN/2

 , (5.3)

andL has size(nq+nr+1)×(nr+1) and is defined similarly using the Taylor coefficients
of log(z+ 1). The vectorsq andr hold the unknown polynomial coefficients in order of
increasing degree. Because the matrix in (5.2) has column dimension one greater than
its row dimension, at least one nonzero solution exists. Usually this can be made into a
square system by choosing, say,q(0) = 1, but if one does not want to assume that any
particular coefficient is nonzero, one can solve (5.2) by a singular value decomposition.
Finally, the coefficients ofp(z) are found by multiplication, via

p =



1

2
c0 0 . . . 0

c1
1

2
c0 . . . 0

...
...

...

cN/2 cN/2−1 . . .
1

2
c0


q−


`0 0 . . . 0
`1 `0 . . . 0
...

...
...

`N/2 `N/2−1 . . . `0

 r . (5.4)

We have not explored the possibility of analogues to the well-known recursive methods
for constructing standard Padé approximants.

If the original function is real, onlyf + needs to be considered in (5.1). If there is
more than one jump location in the interval and (4.5) is to be used, the equation (5.2)



T.A. Driscoll, B. Fornberg / Padé algorithm for the Gibbs phenomenon 85

is modified to have anL matrix and a vector of coefficients for each location, and (5.4)
changes similarly.

We have no rigorous formula for choosing the degreesnp, nq, andn(1)r , . . . , n
(s)
r .

Because the denominator polynomialq(z) is shared, we allownq to be the largest, with
the others equal so far as possible. For the case of just one jump location,nq is roughly
40% of the total available degrees of freedom. Experiments suggest that these choices
can affect the observed accuracy – occasionally by as much as an order of magnitude –
but on average there is little variation within a broad range of choices.

It is well known that the matrixC in (5.3) becomes severely ill-conditioned as
N → ∞ [1], and a similar trend is observed for the matrix of (5.2). This suggests that
there may be a great deal of error in the coefficients determined for the polynomials in
the methods. We observe that the values of the resulting approximations are still useful
– indeed, the “value problem” is commonly believed to be much better conditioned than
the “coefficient problem” in Padé approximation [1].

Concerns over numerical ill-conditioning are also muted by the ill-posedness of
the original problem. Any method which takesN Fourier coefficients and attempts to
recover “the” function which produced them must necessarily make assumptions about
the remaining coefficients. (In forming partial sums, we assume that they are zero, which
is, in fact, a stable regularization of the problem.) In the Fourier–Padé method (and by
extension SFP), we extend the coefficients by assuming a rational form in thez-plane for
f ±. But, to take an extreme example, the Padé approximant(1+ bz)−1 is determined
by its first two coefficients atz = 0. If |b| ≈ 1, then a small perturbation in the second
coefficient can determine whether the extrapolated Taylor coefficients grow or decay,
causing a huge (potentially infinite) change in the result on the unit circle. In other
words, we could never hope to get the Padé polynomial coefficients accurate enough
anyway. This does not invalidate the practical utility of the method, but one must use
accurate data, as in any extrapolation method.

6. Classical examples

We have assumed that the locations of singularities in the function being recon-
structed are known in advance. In light of the formula (4.2) that describes the form of
the half-functionsf ± for a singularity atz = −1, one might try differentiating their
series to convert logarithmic singularities into poles. (See also [13] on differentiation
of the original series, and the “D-log approximant” of [1, p. 51].) These poles would
then be located by standard Padé approximation. However, iff ′ is also discontinuous,
logarithmic singularities will persist and interfere with attempts to locate the poles accu-
rately. In experiments we have been unable to get more than four or five accurate digits
in general for the singularity location by this method. The resulting approximations are
quite accurate anyway, except very near the jumps.

It is interesting, though, to apply this idea to classical examples of the Gibbs phe-
nomenon. For the functionf (x) = x, which has a jump in value only at±π , we noted
in (4.1) thatf +(z) = −f −(z) = −i log(z+1). The Padé approximant for the derivative



86 T.A. Driscoll, B. Fornberg / Padé algorithm for the Gibbs phenomenon

in each case is the exact derivative,±i/(z + 1), providedN > 2. Hence, these approxi-
mants locate singularity exactly. Given this location, from (4.4) we see that consequently
the singular Fourier–Padé approximant is also exact providedN > 2. A similar analysis
holds for the functionf (x) = sgn(x), because in this case

f +(z) = −f −(z) = − i

π
log

(
1+ z
1− z

)
.

We conclude that for these classical examples of the Gibbs phenomenon, using no infor-
mation besides the firstN Fourier series coefficients, the SFP method is exact (in exact
arithmetic) forN > 4.

7. The interpolation problem

Often one may not have access to the exact Fourier coefficients of a function but
rather to the values of the function at equally spaced points. In this section we use the
points

xn = −π + 2n+ 1

2N
π, n = 0,1, . . . ,2N − 1.

(Note that−π , 0 andπ are excluded. We choose this convention because the singulari-
ties in our test functions occur exactly at these points, and coincidence with a grid point
would lead to ambiguity in the value of the function to assign there.) Corresponding to
the grid points are the valuesfn = f (xn).

One approach to this situation is to apply the FFT tof0, . . . , f2N−1 to obtain ap-
proximate values for the Fourier coefficients:

c̃n = 1

2N

2N−1∑
m=0

fme−inxm, n = −N, . . . , N. (7.1)

By definition, c̃−N = −¯̃cN . The Fourier partial sum (2.2) in this context becomes the
trigonometric interpolantf̃N ,

f̃N(x) =
N∑

n=−N

′′
c̃ne

inx, (7.2)

where the doubly primed sum indicates that the first and last terms are to be halved.
(The contribution from the sawtooth mode is divided between equivalent positive and
negative modes to preserve symmetry.)

In the presence of a jump singularity, the convergence properties of the trigono-
metric interpolant are identical to those for the exact truncated Fourier partial sums. The
problem is made more difficult by the fact thatc̃n is an aliased approximation tocn.
For modest values ofN , aliasing error can contaminate the precise singularity informa-
tion that is encoded in the exact coefficients. For this reason, application of SFP to the
discrete coefficients is much less successful than in the exact Fourier case.
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Therefore, we avoid trying to extract Fourier data and instead work with the func-
tion values directly. The relationship between Fourier partial sums and trigonometric
interpolants is analogous to the relationship between Padé approximants and rational in-
terpolants (multipoint Padé approximants). Thus the interpolation form of the Fourier–
Padé technique, which we callFourier-rational interpolation(FRI), is the approximation
p(z)/q(z), where polynomialsp andq have degreesN − 1 andN and satisfy

p(zn)− fnq(zn) = 0, n = 0, . . . ,2N − 1. (7.3)

Here zn = eixn . To generalize the SFP method, we first note that there is no longer
a natural splitting of the function into two complementary parts. Accordingly, to get
a jump we combine the log(1 − z/ζ1) and log(1 − ζ1/z) terms to get−i log(z/ζ1).
Similarly, a jump in themth derivative can be created byzm log(z/ζ1). The natural
adaptation of (4.5), then, is

p(zn)+ r1(zn) log
(
ζ−1

1 zn
)+ · · · + rs(zn) log

(
ζ−1
s zn

)− fnq(zn) = 0,

n = 0, . . . ,2N − 1. (7.4)

Again, one must allocate degrees of freedom amongst the polynomials so that they sum
to 2N . Then the singular Fourier-rational interpolant (SFRI) forf is

f (x) ≈ p(z)+ r1(z) log(ζ−1
1 z)+ · · · + rs(z) log(ζ−1

s z)

q(z)
, z = eix.

Both (7.3) and (7.4) reduce to linear problems. LetVM be a Vandermonde matrix
of degreeM; that is,

Vnm = (zn)m, n = 0, . . . ,2N − 1, m = 0, . . . ,M.

The polynomial coefficients satisfy an equation of the form

[
Vnp −diag(f0, . . . , f2N−1)Vnq L1Vn1 . . . LsVns

]


p
q
r1
...

r s

 = 0.

The matrix has column dimension one larger than row dimension, so a nonzero solution
exists.

8. Comparisons

In this section we compare the SFP and SFRI methods to other available tech-
niques. The Gegenbauer projection technique of [11] consists of projecting the partial
Fourier sum onto a space spanned by Gegenbauer polynomialsCλm. The weight parame-
ter λ and the number of included Gegenbauer polynomials each grow linearly withN ,
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the number of included Fourier modes. We have examined two numerical implementa-
tions: direct calculation by quadrature of the inner products of the partial Fourier sum
with Gegenbauer polynomials; and a cruder, weighted (with the appropriate Gegenbauer
weight) least-squares projection of the partial sum evaluated at many points using a basis
of Chebyshev polynomials. Both methods produced essentially identical results in our
tests.

Eckhoff [6] described a method of singularity removal for functions with jump
discontinuities. The idea is to subtract off the singular part of the function, in the form
of a combination with unknown coefficients of prototype functions with known jumps
in value and derivatives. The coefficients are determined by solving an overdetermined
linear least-squares problem derived from the ansatz that the singular part of the function
matches the exact Fourier data asymptotically.

Both the Gegenbauer and singularity removal methods have discrete variants. In
the Gegenbauer case, equispaced function values are converted to the trigonometric in-
terpolant, which is then used in the Gegenbauer projection. For singularity removal,
Eckhoff advocates matching discrete coefficients of the function with discrete coeffi-
cients of the singular prototype functions. As both methods essentially involve some
least-squares projection, neither results in an interpolant of the given data.

We remind the reader that we are actually plotting smoothed envelopes of the error,
as described in figure 2.

In figure 5 we show the results of the SFP method for our four test functions.
Convergence now occurs at the jumps, although accuracy is lessened near them. We

Figure 5. Error envelopes for the singular Fourier–Padé method withN = 8,16, 24, 32. Convergence has
been restored throughout the interval in each case, including at the jumps.
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Figure 6. Error at the jump singularity using SFP for the functionfd . Using arbitrarily high precision
(as performed by Mathematica), the convergence is spectral. For a double-precision implementation, the

effects of Padé ill-conditioning ultimately limit the accuracy obtained.

Figure 7. Comparison of Gegenbauer projection, Eckhoff’s singularity removal, and the SFP methods for
an analytic, nonperiodic test function (fd in table 1).

comment that the MATLAB code implementing the general SFP method is only about
100 lines, and that all the data for figure 5 was generated in seconds on a PC. To better
see the convergence at a jump location, in figure 6 we isolate the error atx = π for
the smooth nonperiodic functionfd . In arbitrarily high precision, the convergence is
clearly spectral. However, in double precision a common Padé ill-conditioning problem
(see section 5) has a definite effect on the accuracy of the solution, ultimately causing a
plateau at around 10−8.

To compare methods, we return to the analytic, nonperiodic functionfd(x) (see
figure 1 and table 1). We letN = 16,24,32 be the number of modes in the Fourier
partial sum, and we choose parameters to approximately optimize the Gegenbauer and
Eckhoff method (see figure 7). The Gegenbauer projection method performs poorly on
this example. In fact, the reason has nothing to do with Fourier series; the results are not
changed if we project the exact function onto Gegenbauer polynomials of these orders
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Figure 8. Error envelopes for singular Fourier-rational interpolation forN = 8, 16, 24, 32. Global spectral
convergence has been restored.

(up to degree 16 with weight parameter 2 in the last case). Ultimately, convergence ought
to be spectral, but for these values ofN little happens. Eckhoff’s singularity removal
does much better, and the values at the jump are even more accurate than those obtained
by SFP. Overall, though, SFP is better by several orders of magnitude. It is possible that a
least-squares approach in SFP might overcome ill-conditioning, as it does for Eckhoff’s
method.

Figure 8 displays the results of the SFRI algorithm on the four test functions. It
is apparent that global spectral convergence is restored in all cases, including at jump
locations. The convergence of SFRI at the jump forfd is shown in figure 9. As was the
case for singular Fourier–Padé, numerical ill-conditioning can cause the convergence
to plateau well above machine precision. This can also be seen in the interior of the
approximation tofd with N = 32 in figure 8.

For the interpolation problem, Eckhoff [6] suggests using the discrete coefficients
of both the given data and the singular prototype functions in the least-squares problem.
We compare methods for the functionf (x) = (1 + 25x2)−1 over [−1,1] using 32
equispaced function values. This function is analytic on the real line but has poles near
enough to the interval that equispaced polynomial interpolation is unstable due to the
Runge phenomenon [7].

In figure 10 we compare the performances of polynomial interpolation, cubic spline
interpolation, Eckhoff’s discrete method, and SFRI. (Whilef would be trivially repre-
sentable by Padé approximation in the original variablex, this is no longer the case in
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Figure 9. Error at the jump singularity for the collocation problem forfd . The effects of Padé ill-
conditioning are again clear in double precision.

Figure 10. Comparison of interpolation methods forf (x) = (1+ 25x2)−1 and 32 points. Equispaced
polynomial interpolation is unstable. A cubic spline and Eckhoff’s discrete method achieve comparable
accuracy. SFRI is many orders of magnitude better throughout, apparently encountering double-precision

roundoff.

the transformed variablez = eiπx .) SFRI is 6–12 orders of magnitude better than the
comparable cubic spline and Eckhoff methods.

We are not certain how to evaluate the practical significance of the (discontinuous)
interpolation problem, despite its popularity in the literature. If the jump locations are
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known or can be found, one supposes that piecewise interpolation by standard methods
(e.g., rational interpolation) should perform well.

9. Conclusions

The standard Fourier–Padé technique can be used to accelerate significantly the
convergence of Fourier series of analytic functions. We modify this method to account
for the general form of singularity introduced by a discontinuity. The resulting approxi-
mations are spectrally accurate in a global sense. When the jump location(s) are known
in advance, the method works equally well for truncated Fourier or equispaced value
data, and it compares favorably to existing methods.
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