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1. INTRODUCTION

It is well known that Maxwell’s equations for a constant medium can be written in
either a first-order or a second-order form. For the simple case of one space dimension and
appropriate units, we have either

∂E

∂t
= ∂H

∂x
,

(1)
∂H

∂t
= ∂E

∂x
,

or

∂2E

∂t2
= ∂2E

∂x2
,

(2)
∂2H

∂t2
= ∂2H

∂x2
.

Numerical solution methods for discretizing second derivatives are available (for exam-
ple, centered finite differences in space and Nystr¨om or Störmer methods in time). These
methods may have advantages in accuracy and stability over their first-derivative counter-
parts. However, the imposition of boundary conditions is more difficult in the second-order
formulation.
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Liu [4] proposed finite difference (FD) discretizations of the first-order form that target
the second-order derivatives for accuracy. For example, we can discretize (1) in space by

∂Ei

∂t
= 1

h
(Hi+1− Hi ),

(3)
∂Hi

∂t
= 1

h
(Ei − Ei−1).

Note the different approximations used on the right-hand sides; they are both first-order
accurate approximations of the derivatives in (1). However, one finds that

∂2Ei

∂t2
= 1

h2
(Ei+1− 2Ei + Ei−1),

(4)
∂2Hi

∂t2
= 1

h2
(Hi+1− 2Hi + Hi−1),

which are second-order accurate approximations of (2). Liu also proposed methods which
were first-order accurate on (1) and as much as sixth-order accurate on (2) (we denote the
accuracy of such a method by the pair (1, 6)). In each case the coefficients in the discretization
for H are the antisymmetric counterpart to those forE. The coefficients for each individual
component do not themselves possess the usual antisymmetry seen in accurate FD for the
first derivative. It is straightforward to find methods of this type with orders of accuracy
(p, 2m− p− 1) usingm unknown coefficients.

In [4] numerical experiments seemed to confirm the relevance of the second-derivative
accuracy. In each experiment a pulse was propagated in a periodic domain until such time as
it had returned to its original position. In this note we show that such times—more precisely,
integer multiples of half of the period—are special, and at all other times the accuracy is
governed by the (relatively inaccurate) approximation to the first derivative. In a nonperiodic
problem these special times would not exist.

In [3] Janaswamy and Liu applied the nonsymmetric methods to problems in curvilinear
coordinates. Here we show that the nonsymmetric methods are inaccurate at all times in the
presence of variable coefficients, which are by-products of such coordinate changes.

Gottliebet al.[2] noted the reduced order of accuracy in Liu’s methods, although they did
not explain why Liu observed better resuls. They also proposed a pre- and postprocessing
strategy for restoring high-order convergence to the nonsymmetric methods. They give no
indication, however, of how to apply their procedure to nonperiodic or variable-coefficient
situations, leaving the practical utility of the nonsymmetric methods open to question.

For the rest of this note we reserve the word “order” for reference to the order of accuracy
of a method and use the terms “first-derivative” and “second-derivative” to describe the
different PDE formulations.

2. ANALYSIS

The general solution for each component of (2) is given by d’Alembert’s formula. For
example,

E(x, t) = f (x − t)+ f (x + t)+
∫ x+t

x−t
g(ξ) dξ, (5)
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where

f (ξ) = E(ξ, 0),

g(ξ) = ∂E

∂t
(ξ, 0),

with periodic extensions outside the original intervalx ∈ [−L , L). By the first-order for-
mulation (1),g(ξ)= ∂H

∂x (ξ, 0).
The nonsymmetric FD methods are designed to be accurate representations of (2). How-

ever,g(ξ) in d’Alembert’s formula is replaced by

∂H

∂x
(ξ, 0)+ hpr (ξ), (6)

wherep is the order of accuracy of the FD method for the first derivative. Hence the same
order of error remains inE(x, t).

Note that the leading term inr (ξ) is a higher-order derivative ofH(x, 0). Thusr has no
constant Fourier component. At the timest =mL,m∈N, the integral in (5) is overm full
periods ofg, so the contribution of the error term in (6) vanishes. At those times, and only
those times, the error is controlled by the accuracy of the second-derivative approximation
to (2).

The nonsymmetric methods also run into trouble with variable coefficients. In the equa-
tions

∂E

∂t
= α(x)∂H

∂x
,

(7)
∂H

∂t
= β(x)∂E

∂x
,

the correct second-derivative form forE is

∂2E

∂t2
= αβ ∂

2E

∂x2
+ αβ ′ ∂E

∂x
.

But applying the method of (3) we get

∂2Ei

∂t2
= h−1αi

(
∂Hi+1

∂t
− ∂Hi

∂t

)
= h−2αi (βi+1Ei+1− (βi+1+ βi )Ei + βi−1Ei−1).

When all quantities above are expanded in space at pointi , this becomes

∂2Ei

∂t2
= αiβi

∂2Ei

∂x2
+ αiβ

′
i

∂Ei

∂x
+ 1

2
hαi

(
β ′′i
∂Ei

∂x
+ β ′i

∂2Ei

∂x2

)
+ O(h2).

Hence the method is only first-order accurate.
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3. NUMERICAL EXPERIMENTS

In this section we validate the claims made above. We run the 1D Maxwell equations (1)
on the periodic intervalx ∈ [−1, 1), with initial values

E(x, 0) = e−30x2
,

H(x, 0) = −e−30x2
.

Although not naturally periodic, these functions are comparable to double precision round-
off at the ends of the interval. In space we use the method called NS3 in [4], which is first
order on the first derivative and sixth order on the second derivative. We time step using
fourth-order Runge–Kutta with a time step 1/2048, small enough so that all observed errors
are due to spatial discretization only.

Figure 1 shows the error for 64 and 128 points at evenly spaced times from 0 to 2 (i.e.,
up to one full traversal). The vertical scale on the time series is [−0.2, 0.2], indicating that

FIG. 1. Errors for a nonsymmetric FD method for periodic Maxwell’s equations in 1D. Each curve is the
difference between the numerical solution with 64 (solid) and 128 (dashed) points in [−1, 1). The scale of each
graph on the left is [−0.2, 0.2], and a dotted line marks the zero level. The plot on the right is rescaled to better
show the error at the final time.
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FIG. 2. Convergence rates for nonsymmetric FD methods. At general times in a constant-coefficient problem
(left) or any time in a variable-coefficient problem (right), the NS convergence rate is governed by the poor
approximation to the first derivative. Here the (1, 6) method that is nominally sixth-order is in fact inferior to Yee’s
spatial discretization.

the errors are quite large. Furthermore, the grid refinement reduces error by about half,
consistent with first-order accuracy. Observe also that the errors are in amplitude and not in
phase, as pointed out in [2]. At the special timest = 1 andt = 2 the error is much smaller.
The maximum errors att = 2 are about 8.99× 10−5 and 1.5× 10−6. Their ratio of about 60
implies an effective convergence order of 5.9.

The convergence rate att = 1.75 is shown explicitly in Fig. 2. The NS(1, 6) method
is clearly inferior to Yee’s spatial scheme. Figure 2 also shows results at timet = 2 for
the variable coefficient problem (7) withα(x)= 1+ 0.2 sin(πx), β(x)= 1− 0.2 cos(πx).
(The “exact” solution in this case was produced by an eighth-order method at the finest
resolution.) The NS method of type (1, 6) is now first order accurate even at the final
time, while Yee’s method [5] retains second-order accuracy. Any standard staggered or
nonstaggered FD method [1] would be similarly unaffected.
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