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Abstract. Symm’s equation is a first-kind integral equation for computing conformal maps of
simply connected regions. The package CONFPACK solves Symm’s equation by an indirect bound-
ary element method using an accurate corner representation. This solution technique is extended
here to include nonoverlapping domain decomposition. Degrees of freedom are introduced on one
or more interfaces and different unknowns are used, leading to a system of second-kind equations.
The corresponding linear system can be expressed in Schur complement form. The accurate treat-
ment of corners is preserved in the new formulation. The results of serial and parallel MATLAB
implementations of the new algorithm show significant speedups as the number of unknowns grows.
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Introduction. Symm’s equation [15, 25] is one of the best-known integral equa-
tions underlying numerical methods for conformal mapping. Suppose Ω is a bounded,
simply connected region with a piecewise analytic boundary. Symm’s method deals
with the Riemann map g from Ω (or Ωc) to the unit disk. The nonlinear problem
of finding g is reduced to the linear problem of finding a harmonic function satis-
fying certain Dirichlet boundary conditions, using a Fredholm integral equation of
the first kind. Symm’s method has been efficiently and elegantly implemented as the
public-domain package CONFPACK [13]. An important feature of CONFPACK is an
accurate treatment of the singularities introduced by corners in the boundary.

There has been little study of domain decomposition in conformal mapping [6,
9, 20, 21] and apparently none relating to integral equations for conformal mapping.
This is true despite the fact that Symm’s method is essentially an indirect boundary
element method for Laplace’s equation, and domain decomposition is common in
boundary element methods generally [4, 16]. Any region with a long, narrow channel,
or with structures on different scales, is a candidate for decomposition. The basic idea
is to introduce a few extra unknowns on the interfaces between subregions in order
to introduce sparse structure into the system matrix, corresponding to a localization
of the boundary integrals. The resulting linear system is in Schur complement form
and is ideal for parallelization. An additional benefit is that “deadwater” regions can
be treated just once, whereas regions of greater activity can be resolved adaptively
with a minimum of subdomain interactions. All this can be done while retaining the
highly accurate treatment of corners used by CONFPACK.

In section 1 we introduce Symm’s equation for the interior map and briefly summa-
rize existing numerical methods, including CONFPACK. In section 2 we show how to
incorporate domain decomposition into the integral equations. In section 3 we discuss
the representation of unknowns on the boundary in a way that preserves the accurate
treatment of corners. In sections 4 and 5 we fully describe the numerical method and
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DOMAIN DECOMPOSITION FOR SYMM’S METHOD 923

compare its efficiency to the single-domain method. In section 6 we present the results
of experiments with serial and parallel MATLAB implementations of the domain de-
composition method for polygons, using both fixed and adaptive strategies. Finally,
in section 7 we remark on a potential link to the crowding phenomenon.

1. Symm’s equation. We begin with a summary of the mathematics behind
Symm’s method. This material can be found in more detail in, e.g., section 16.6 of [11].

Let Ω be a simply connected open region in C such that Γ = ∂Ω is a finite
collection of analytic curves. We do not allow Γ to have interior or exterior cusps. Let
z0 ∈ Ω and let g be a conformal map of Ω to D, the unit disk, that maps z0 to the
origin. (The choice of g has one rotational degree of freedom.)

Because g′(z0) 6= 0, the function g(z)/(z − z0) is nonzero throughout Ω. Thus
g(z)/(z − z0) has a logarithm in Ω, so we can write

g(z) = (z − z0) exp (u(z) + iv(z)),(1.1)

where u and v are real harmonic conjugates. Furthermore, since |g(z)| = 1 for z ∈ Γ,
the function u is a solution of the boundary-value problem

∆u(z) = 0, z ∈ Ω,(1.2a)

u(z) = − log |z − z0|, z ∈ Γ.(1.2b)

We can express u in terms of a single-layer potential [4]:

u(z) = − 1

2π

∫
Γ

σ(ζ) log |z − ζ| dΓ.(1.3)

By evaluating this expression on Γ, we arrive at Symm’s equation for interior mapping:

log |z − z0| = 1

2π

∫
Γ

σ(ζ) log |z − ζ| dΓ, z ∈ Γ.(1.4)

This is a Fredholm integral equation of the first kind.
Symm’s equation can always be solved uniquely for the potential σ, provided the

capacity of Γ is not equal to 1 [8]. In fact, σ has a special meaning—it is closely
related to the boundary correspondence function, which is defined as follows. Suppose
that ζ = ζ(s), 0 ≤ s ≤ L, is a piecewise analytic parameterization of the boundary Γ.
The boundary correspondence function is defined to be

θ(s) = arg(g(ζ(s)))(1.5)

for any choice of the argument that makes θ(s) continuous. The potential σ, regarded
as a function of s, is

σ(s) = |ζ ′(s)|θ′(s),(1.6)

where ζ ′(s) can be taken as an arbitrary finite number at a corner of Γ. If arc length
is used to parameterize the boundary, σ and θ′ are identical. Equation (1.6) is useful
in the construction of accurate numerical methods, as we shall see. Once σ is known,
the conjugate pair u and v can be found (up to an additive constant in v) by replacing
log |z − ζ| by log(z − ζ) in (1.3), taking care to make the logarithm continuous in Ω.
In light of (1.1), this determines g (up to a rotation).
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924 TOBIN A. DRISCOLL

There are many other integral equation formulations for interior conformal map-
ping [7, 11], including those of Berrut [3], Warschawski [28], Henrici [11], and those
based on the Szegő kernel [17, 19]. There are also methods for the inverse mapping,
including conjugate function approaches [10] such as Theodorsen’s method [26] and
Wegmann’s method [29].

To approximate the solution of Symm’s equation (1.4), the typical procedure is
to discretize the boundary, choose a representation for the approximation to σ, and
replace the integral equation by a linear system of algebraic equations. This is the
approach originally taken by Symm [25], who chose a piecewise constant represen-
tation for σ. To improve accuracy, Hough [12] and Hough and Papamichael [14] use
information about the behavior of θ′(s) at the corners of Γ to demonstrate that Jacobi
polynomials and weights give the correct singular behavior of σ at the corners. This
is the approach implemented in CONFPACK [13], and it allows high accuracy of the
solution even near corners.

These numerical techniques can be viewed as “indirect” boundary element meth-
ods [4]. In some contexts, indirect methods are not as popular as direct methods
because the potential σ obtained has no direct physical meaning. However, in this
context, the use of σ allows the representation of corner singularities by the Jacobi
weight method.

Alternative numerical approaches are possible. Berrut [2] and Reichel [24] use
FFT-based iterative methods to solve (1.4). Amano [1] uses a charge-simulation
method in which point charges outside the domain are used to approximate the solu-
tion to (1.2).

2. Domain decomposition. If two portions of Ω are separated by a long, thin
channel, the influence of data at one end of the channel is exponentially weak at
the other end. We seek to improve efficiency by not having to compute all such weak
interactions explicitly, as is required in (1.4). Our mechanism will be to introduce new
quantities on an artificial interface in the channel, creating a nonoverlapping domain
decomposition. All interaction between subdomains will be localized to the interface.
In terms of the linear system resulting from discretization, the new unknowns along
the interface give the system matrix a block sparsity structure. In fact, the structure
we shall arrive at is the Schur complement form [5], which yields computational savings
in both assembly and solution.

Accordingly, we now let Ω be divided into two nonoverlapping regions Ω1 and
Ω2 and let Γ1 and Γ2 be the positively oriented boundaries of these subregions. The
interface Γ12 is equal to Γ1 ∩ Γ2 and is taken to be oriented positively with respect
to Ω1. See Figure 2.1.

A natural first idea would be to introduce potentials on the interface as we did on
the boundary. A potential on each “side” of Γ12 would be mathematically necessary
to keep the system square. Thus, for k = 1, 2 we could define σk on all of Γk, define
a function uk on Ωk by (1.3), and supplement (1.4) with equations requiring the uk
and their normal derivatives to match along Γ12.

This is quite easy to do with, say, piecewise constant boundary elements, and
the resulting linear system is indeed of the desired form. But the σk have no obvious
relationship to the global potential σ. One can still use the individual potentials to
compute g in the subregions, but the boundary correspondence function will not be
known. More seriously, the new potentials σk do not retain the same behavior at the
corners as σ, and therefore the specialized treatment of corners used by CONFPACK
cannot be applied. This makes calculations of high accuracy difficult. We now derive
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DOMAIN DECOMPOSITION FOR SYMM’S METHOD 925
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Fig. 2.1.Typical nonoverlapping domain decomposition.

an alternative formulation that avoids this problem. In what follows, we adopt the
notation

G(z, ζ) =
1

2π
log |z − ζ|(2.1)

for the fundamental solution for the Laplace operator.
Let

ũ(z) = u(z) + log |z − z0|.(2.2)

(Recall that z0 is the conformal center of Ω.) From (1.2) we see that

∆ũ(z) = 2πδ(z − z0), z ∈ Ω,(2.3a)

ũ(z) = 0, z ∈ Γ.(2.3b)

Hence ũ(z) is a multiple of the Green’s function for Ω with pole at z0. We shall now
apply a direct integral equation to solve for ũ [16]. Let z ∈ Ω. By Green’s second
identity, ∫

Ω

ϕ∆ψ dΩ−
∫

Ω

ψ∆ϕdΩ =

∫
Γ

ϕ
∂ψ

∂n
dΓ−

∫
Γ

ψ
∂ϕ

∂n
dΓ,(2.4)

with ψ = ũ(ζ) and ϕ = G(z, ζ), we have

log |z − z0| − ũ(z) =

∫
Γ

G(z, ζ)
∂ũ

∂n
(ζ) dΓ.

Now suppose z approaches a point on Γ. The ũ(z) term on the left will need to be
multiplied by a constant depending on the angle subtended by Γ at the limit point,
but in any case ũ(z)→ 0. Thus we have

log |z − z0| =
∫

Γ

G(z, ζ)
∂ũ

∂n
(ζ) dΓ.(2.5)

By comparison with (1.4), we see that ∂ũ/∂n is identical to the potential σ.
Assume without loss of generality that z0 ∈ Ω1. By applying Green’s identity (2.4)

to the subregions Ω1 and Ω2, inserting (2.3), and letting z ∈ Γ, we arrive at the system

c1(z)ũ1(z)− log |z − z0| =
∫

Γ1

ũ1(ζ)
∂G

∂n
(z, ζ) dΓ1 −

∫
Γ1

G(z, ζ)
∂ũ1

∂n
(ζ) dΓ1,(2.6a)

c2(z)ũ2(z) =

∫
Γ2

ũ2(ζ)
∂G

∂n
(z, ζ) dΓ2 −

∫
Γ2

G(z, ζ)
∂ũ2

∂n
(ζ) dΓ2,(2.6b)
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926 TOBIN A. DRISCOLL

where ũ1,2 represent the values of ũ on the two subregions and 2πck(z) is the interior
angle subtended by Γk about z. (For z on a smooth portion of Γk, ck(z) = 1

2 .) Of
course, ũ1 and ũ2 are not independent; they are related by

ũ1 = ũ2,(2.7a)

∂ũ1

∂n
= −∂ũ2

∂n
on Γ12.(2.7b)

We have replaced the Fredholm equation of the first kind (1.4) with a system of
Fredholm equations of the second kind. The kernel ∂G/∂n is equal to the Neumann
kernel [11] given by

∂G

∂n
(z, ζ(s)) =

1

2π
Im

(
ζ ′(s)

|ζ ′(s)|(ζ(s)− z)
)

for any parameterization ζ(s) of a boundary. This kernel is nominally more singular
than the logarithmic one arising from the fundamental solution. However, ũi(ζ) = 0
for ζ ∈ Γi\Γ12; furthermore, if we assume that the interface is a straight line segment,
then the kernel will be zero on Γ12 when ζ, z ∈ Γ12. Hence no singular integrals need
be computed. Note that this essentially returns (2.6) to a system of equations of the
first kind.

3. Representation of solutions. We now recall and extend the representation
of unknowns in Symm’s equation described by Hough [12, 13]. Let ζ(s) be a local
parameterization of a typical analytic arc of Γ with endpoints ζ(−1) = z− and ζ(1) =
z+ such that |ζ ′(s)| is bounded and never zero. Let Γ have interior angles π(1 + β−)
and π(1 + β+) at the endpoints, respectively. We represent ∂ũ/∂n on this arc by

∂ũ

∂n

(
ζ(s)

)
= φ(s)w(s) = φ(s)(1 + s)α−(1− s)α+ ,(3.1)

where the Jacobi indices α± are given by

α± = −1 +
1

1 + β±
.

Hough [12] has shown that while ∂ũ/∂n is only in L2[−1, 1] and is infinite at a reen-
trant corner, φ is Hölder continuous on [−1, 1] with index greater than 1

2 .
We approximate φ by

φ(s) ≈
m−1∑
j=0

qjPj(s),(3.2)

where the Pj ’s are Jacobi polynomials associated with the weight function w(s). To
match the m unknown coefficients, we choose m collocation points zj . These are ζ(sj),
j = 1, . . . ,m, where sj is the jth zero of Pm.

We also need a representation of ũ on the interface Γ12. Let ζ(s) now be a param-
eterization of the interface. It seems natural to suppose that the appropriate weight
function will be as in (3.1) with the Jacobi indices increased by 1. Hence we define

ũ(ζ(s)) = ψ(s)(1 + s)1+α−(1− s)1+α+ .(3.3)
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DOMAIN DECOMPOSITION FOR SYMM’S METHOD 927

We now prove that ψ is as smooth as φ. This theorem is the analog of Proposi-
tion 2.1 in [12].

Theorem 3.1. With the notation of this section, the quotient function ψ(s) is in
Hν [−1, 1], where ν is given by

ν =


min

(
(1 + β−)−1, (1 + β+)−1

)
if max(β−, β+) > 0,

1 if max(β−, β+) < 0,

1− ε for any ε > 0, otherwise.

Proof. Let πγ be the interior angle at the left endpoint z−; i.e., γ = 1 + β−.
From [22] we have two expansions of g(z) near z−:

(i) If γ = p/q, with p and q relatively prime, then

g(z)− g(z−) =
∑
j,k,l

Bjkl(z − z−)j+k/γ
(
log(z − z−)

)l
,(3.4a)

where j, k, and l run over integers such that j ≥ 0, 1 ≤ k ≤ p, and 0 ≤ l ≤ q and
where B010 6= 0.

(ii) If γ is irrational, then

g(z)− g(z−) =
∑
j,k

Bjk(z − z−)j+k/γ ,(3.4b)

where j ≥ 0, k ≥ 1, and B01 6= 0.
Note from (1.1) and (2.2) that ũ(z) = log |g(z)|. Hence for z near z−,

ũ(z) = log |g(z−) + S(z)| ≤ |S(z)|+O
(|S(z)|2),

where S(z) represents the sum on the right-hand side of the appropriate member of
(3.4). We set z = ζ(s) and observe that |ζ(s) − ζ(−1)| and (s + 1) have the same
asymptotic behavior. We wish to factor out (s + 1)1/γ from S(ζ(s)) and show that
the quotient is appropriately well behaved for s near −1; i.e., it is in Hν [−1,−1 + δ]
for some δ > 0. We consider three cases.

(a) Suppose 1 < γ < 2. If γ is irrational, then clearly (s+1)1/γ is the most singular
term after the factorization. But the same is true if γ = p/q, since necessarily p > 1
and the B020 term appears in (3.4a). We observe that (s+1)1/γ is in H1/γ [−1,−1+δ]
for any δ > 0.

(b) Suppose γ = 1. Then from (3.4a) we see that the most singular term in the
quotient is (s+ 1) log(s+ 1), which is in H1−ε for any ε > 0.

(c) Suppose 0 < γ < 1. If γ is irrational, again it is clear that (1 + s)1/γ is the
most singular term. If γ = p/q, then (1 + s) is the most singular term, because q > 1
and the logarithmic terms in (3.4a) cannot appear until j ≥ 2. In either case, the
quotient is in H1.

Similar reasoning applies near z+.
The natural representation of ψ is analogous to (3.2), with the Jacobi polynomials

being taken with respect to the new weight function in (3.3), that is, with Jacobi
indices increased by 1.

We have seen that on each analytic arc of Γk, we have unknown coefficients from
the Jacobi expansion (3.2) defining ∂ũ/∂n on that arc. These coefficients are globally
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928 TOBIN A. DRISCOLL

collected into a vector q(k). Let us suppose the elements of q(k) are ordered such that
the coefficients relating to values on Γ12 are last, so that

q(k) =

[
q

(k)
p

q
(k)
s

]
.

(The subscripts are meant to convey “private” and “shared.”) Let the length of q
(k)
p

be Nkp, the length of q
(k)
s be Nks, and Nk = Nkp +Nks. We also have the Nks-vector

v
(k)
s defining ũk on Γ12. (For symmetry of notation, we can define v

(k)
p , all of whose

entries are zero.) Similarly, we define z(k) as a vector of Nkp collocation points on
Γk \ Γ12 and Nks collocation points on Γ12. We require that N1s = N2s = Ns and
that corresponding entries of the s-vectors have the same meaning globally on Γ12.

4. Numerical method. We now present the discretized form of (2.6). Each
integral on the right-hand side of the equations is replaced by a matrix operating on
q(k) or v(k). For example, the second integral in (2.6a) involves the logarithmic kernel
G(z, ζ) against the normal derivative of ũ1 around Γ1. The integration is performed for
each basis function in the representation (3.2) and for z ranging over the collocation
points in z(1). The result is a matrix B(1) that operates on q(1) to produce a vector
of integral evaluations for the discrete representation at the collocation points. We
have a matrix B(2) playing the same role on Γ2, and we have A(1) and A(2) operating
on v(1) and v(2) to perform integrations of the discrete ũ1 and ũ2. We also need
approximations Ĩ(k) of the identity operating on v(k) for the left-hand sides of (2.6).
Each column of Ĩ(k) is the evaluation of one basis function in the representation of
v(k) at the collocation points z(k).

All of these matrices can be written in block form according to the private/shared
partitioning. The result for k = 1, 2 is[

B
(k)
pp B

(k)
ps

B
(k)
sp B

(k)
ss

][
q

(k)
p

q
(k)
s

]
−
[
A

(k)
pp − 1

2 Ĩ
(k)
pp A

(k)
ps

A
(k)
sp A

(k)
ss − 1

2 Ĩ
(k)
ss

] [
0

v
(k)
s

]
=

[
b
(k)
p

b
(k)
s

]
,

where b(1) = log |z(1)−z0| and b(2) = 0. The only singular integrals that arise are those
needed in the B matrices. These involve boundary integrals with the kernel log |z− ζ|
and are performed as in CONFPACK, by splitting out the singularity by subtrac-
tion and making calls to QUADPACK [23]. Nonsingular integrals are calculated by
compound Gauss–Jacobi integration. The integrals for the A matrices need be com-
puted only over the interface Γ12. As was pointed out above, no singular integrals are

necessary as long as Γ12 is a line segment, since in that case A
(k)
ss = 0.

We now combine the subdomain problems into a global system. Relations (2.7)
imply

v(1)
s = v(2)

s ,

q(1)
s = −q(2)

s .

Altogether we have
B

(1)
pp 0 B

(1)
ps −A(1)

ps

0 B
(2)
pp −B(2)

ps −A(2)
ps

B
(1)
sp 0 B

(1)
ss

1
2 Ĩ

(1)
ss

0 B
(2)
sp −B(2)

ss
1
2 Ĩ

(2)
ss



q

(1)
p

q
(2)
p

q
(1)
s

v
(1)
s

 =


b
(1)
p

0

b
(1)
s

0

 .(4.1)
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DOMAIN DECOMPOSITION FOR SYMM’S METHOD 929

This matrix is in Schur complement form. The advantage of this form is significant
when Ns is much smaller than N1p and N2p. In this case, the system (4.1) is solved

by first solving for q
(1)
p and q

(2)
p from the first and second block rows, respectively,

and then substituting into the equations for the interface variables:([
B

(1)
ss

1
2 Ĩ

(1)
ss

−B(2)
ss

1
2 Ĩ

(2)
ss

]
−
[
B

(1)
sp

0

] [
B(1)
pp

]−1
[
B

(1)
ps −A(1)

ps

]
−
[

0

B
(2)
sp

] [
B(2)
pp

]−1
[
−B(2)

ps −A(2)
ps

])[q(1)
s

v
(1)
s

]

=

[
b
(1)
s −B(1)

sp

[
B

(1)
pp

]−1
b
(1)
p

0

]
.

Once q
(1)
s and v

(1)
s have been found, they can be substituted back to solve for q

(1)
p and

q
(2)
p .

Approximations to ũ1(z) and ũ2(z) for z ∈ Ω could now be obtained from (2.6),
with ci(z) = 1, by integration around Γ1 or Γ2. However, we also need the harmonic
conjugate v(z) of u(z) in order to compute g. It is therefore convenient to augment
the integration kernels in (2.6) by their harmonic conjugates:

uk(z) + ivk(z) = lk(z) +
1

2π

∫
Γk

[−itk(ζ)

ζ − z ũk(ζ)− log(z − ζ)
∂ũk
∂n

(ζ)

]
dΓk,(4.2)

where tk(ζ) is the unit tangent to Γk at ζ, l1(z) = 0, and l2(z) = − log(z − z0). If z
is pathologically close to Γ or Γ12, we can proceed as in CONFPACK by analytically
continuing the boundary parameterization and the representation of unknowns [13].

The domain decomposition procedure is straightforwardly generalized to regions
decomposed into three or more subdomains. One forms Schur complements for the
subregions adjacent to each interface, solves for the interface quantities simultane-
ously, and substitutes back to find the primary quantities.

We do not see an application of domain decomposition to inverting the map g.
CONFPACK treats the inverse map analogously to the forward map by means of
an inverse boundary correspondence function on the unit circle. Naturally, one could
simply use the computed ∂ũ/∂n in the same fashion. Alternatively, one could attempt
to use a nonlinear iteration on the forward map.

5. Computational efficiency. The domain decomposition procedure requires
O
(
N2

1p + N2
2p + Ns(N1p + N2p)

)
flops to form a single linear system and O

(
N3

1p +

N3
2p+Ns(N

2
1p+N2

2p+N2
s )
)

to solve the system by direct Schur complementation. The

undecomposed version requires O
(
(N1p+N2p)

2
)

flops to form and O
(
(N1p+N2p)

3
)

to
solve one system. Asymptotically, the domain decomposition method takes a constant
fraction of the time needed by the direct solution, assuming a uniform growth in N1p,
N2p, and Ns. In practice, forming the system is usually the most expensive step.

A practical method for solving Symm’s equation must be adaptive. CONFPACK,
for example, initially chooses a uniform distribution of unknowns along the boundary
arcs, solves the discretization of Symm’s equation, and adjusts the number of un-
knowns on each arc based on the size of the coefficients in the orthogonal expansion
(3.2). The system is updated and solved again, leading to an iterative process. During
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Fig. 6.1. Relative CPU time for forming and solving the decomposed Symm’s equation for a
rectangle. The timings for decompositions into 2, 4, and 8 subdomains are shown as a fraction of
the time needed by the undecomposed version.

an update, only those columns and rows corresponding to new unknowns and collo-
cation points need be computed, but the entire linear system must be solved from
scratch.

Domain decomposition allows adaptation to proceed more efficiently. Consider
the polygon in Figure 2.1, with the channel made more narrow. CONFPACK quickly
detects that relatively few unknowns are needed on the arcs of Γ2, but it must re-
peatedly solve for a linear system including those unknowns as it adds resolution to

Γ1. If a domain decomposition method is used, the block B
(2)
pp need be formed and

LU -factored only once. Hence a good choice of decomposition can reduce the amount
of computational overhead required by deadwater regions in the adaptive solution.

Parallelization is trivially achieved in both the system formation and private block
inversion stages that consume most of the computational effort. The load balancing
depends on the evenness of the distribution of boundary unknowns among the sub-
regions. This can be a delicate matter for an adaptive strategy, in which unknowns
tend to concentrate near the conformal center.

Evaluation of the map at points in Ωk requires O(Nkp +Ns) flops, as opposed to
O(N1p + N2p). Over many evaluations, this can be a substantial savings, especially
within deadwater regions where Nkp is ideally rather small.

6. Numerical experiments. The domain decomposition version of Symm’s
method described above has been implemented in MATLAB, except for singular inte-
gration against the logarithmic kernel, for which QUADPACK is used. For simplicity
of coding, the implementation so far accepts only polygonal domains.

We begin with nonadaptive computations performed serially on a SPARC-10
workstation. Our first example is a 16 × 1 rectangle with 34 vertices distributed
evenly around the boundary. We consider decompositions into d = 2, d = 4, and
d = 8 equally sized subregions by splitting in the long direction. Figure 6.1 shows
the CPU time required in each case, expressed as a fraction of the time needed for
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a single domain solution, as a function of the number of unknown Jacobi polynomial
coefficients per side or interface. Even without parallelization, we see the advantage of
forming and solving several smaller systems rather than a single large one. The d = 4
and d = 8 versions are slower than the others for small systems, because of additional
overhead, but overtake the other versions as the number of unknowns grows.

In Figure 6.2 we show results for an early stage in the construction of the Koch
snowflake. The region is decomposed into seven parts, one of which has exclusively
interface unknowns. Again the relative timing improves as more unknowns are added.
(These calculations make no use of symmetry, which could render the domain decom-
position superfluous in this case.)

2 4 6 8 10 12
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0.6

0.8

1

1.2

1.4

unknowns on each side

re
la

tiv
e 

C
P

U
 ti

m
e

Fig. 6.2. Domain decomposition and relative CPU time for the decomposed algorithm on a
partially constructed Koch curve.

We now consider adaptive computations, performed in parallel on an IBM SP2.1

In the adaptive strategy, the solution is initially obtained by a uniform distribution
of unknowns per side. Since the Jacobi polynomials are orthogonal with respect to
the weight functions used, the size of the coefficients on a side is assumed to be a
fair indicator of the error on that side. The number of unknowns is updated based
on an exponential fit of the coefficients, and the system or systems are updated and
solved. The individual subdomain matrix computations, inversions, and Schur com-
plementation are performed in parallel, while the interface solution, subdomain back-
substitutions, and adaptive refinement decisions are performed by a master process,
since these steps take negligible time. We measure the total elapsed time required
for a solution at each requested accuracy and report speedup and parallel efficiency.
Figures 6.1 and 6.2 suggest that a parallel efficiency greater than 100% is possible
because the domain decomposition alone lends a speedup independent of the parallel
processing.

We consider the 16 × 1 rectangle (depicted in Figure 6.3) with the conformal
center one unit from the left edge and a quarter unit from the bottom edge. We put
a single vertical interface two units from the left edge to achieve much better load
balancing than that achieved by placing the interface in the middle of the rectangle. In

1The parallel MATLAB computations were done in the MultiMATLAB environment [27].
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932 TOBIN A. DRISCOLL

Fig. 6.3. Rectangular region used in computational tests. The aspect ratio of the rectangle is
16, the conformal center is one unit to the right and a quarter unit above the lower left corner, and
the interface is two units from the left edge.
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Fig. 6.4. Speedup and efficiency for parallel adaptive Symm computations on the rectangle in
Figure 6.3. The parallel efficiency exceeds 100% because the serial computations for the decomposed
region can be faster than for the undecomposed case.

Figure 6.4 we display the speedup and efficiency for several target accuracies. Because
the rectangle map is known exactly, we can verify that the requested accuracy is met;
in fact, it is exceeded in all of these examples.

In Figure 6.5 we display results for a spiral region with 36 vertices. A decompo-
sition into 5 subdomains is shown; a decomposition into 3 subdomains is obtained
by eliminating the interfaces closest to the conformal center. Initially the subdomain
containing the conformal center has relatively few unknowns, but the adaptive refine-
ment quickly pushes the distribution into more of a balance. Parallel efficiency for 3
domains rises and then falls, presumably due to poor balancing. The efficiency for 5
domains starts at about 25% and increases to 75%.

7. On crowding. A well-known phenomenon in conformal mapping goes by the
name of crowding [18]. When mapping regions have long, thin channels, such as a
rectangle, the images of the vertices are separated by a distance that is exponentially
small in the aspect ratio of the channel.

In terms of Symm’s equation, g′ and θ′ can become exceedingly small in a crowded
region. For computing g, this normally is not regarded as a problem because θ′ can
still be found relatively accurately in a global sense, i.e., compared to O(1). However,
the inverse map g−1 is frequently important in applications. Unless g is resolved in a
locally accurate sense, g−1 cannot be computed accurately in a crowded area.

The domain decomposition procedure should allow us to circumvent this problem.
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Fig. 6.5. Speedup and efficiency for a spiral with 36 vertices.

For example, consider the rectangle of Figure 6.3. The solution on the right edge of
the rectangle should have order of magnitude roughly exp(−16π) ≈ 10−22. Since the
solution on the left edge is O(1) or O(0.1), there is no hope of resolving the right edge
in double precision with a single domain solution. But if we introduce unknowns along
an interface halfway along the rectangle, where the solution is of an intermediate size,
each individual subproblem should span a reasonable range of magnitudes. To exploit
the situation appropriately, one probably needs to introduce scaling on the individual
interfaces, because all interfaces are solved in a single system. The application of the
domain decomposition method in the presence of crowding is a subject for future
study.

Acknowledgments. The author thanks Nick Trefethen and Lars Wahlbin for
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