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Abstract

Purpose: Several elements are developed to quantitatively determine the contribu-
tion of different physical and chemical effects to tear breakup (TBU) in subjects with
no self-reported history of dry eye (DED) or other ocular surface disease. Fluores-
cence (FL) imaging is employed to visualize the tear film (TF) and to determine TF
thinning and potential TBU.
Methods: An automated system using a convolutional neural network that was
trained and tested on more than 50,000 images from FL imaging experiments was
deployed. The trained system could identify multiple TBU instances in each trial.
Once identified, extracted FL intensity data was fit by mathematical models that
included tangential flow along the eye, evaporation, osmosis, and FL intensity of
emission from the TF. The mathematical models consisted of systems of ordinary
differential equations for the aqueous layer thickness, osmolarity, and the FL con-
centration; they are a local approximation to TF thinning and/or TBU dynamics. FL
intensity was computed using the resulting thickness and FL concentration. Opti-
mizing the fit of the models to the FL intensity data determined the mechanism(s)
driving each instance of TBU and produced an estimate of the osmolarity within TBU.
Results: Initial estimates for FL concentration and initial TF thickness agree well
with prior results. Fits were produced for N = 467 instances of potential TBU from
15 non-DED subjects. The results showed a distribution of causes of TBU in these
healthy subjects, as reflected by estimated flow and evaporation rates, which appear
to agree well with previously published data. Final osmolarity depended strongly on
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the TBU mechanism, generally increasing with evaporation rate but complicated by
the dependence on flow.
Conclusion: The method has the potential to classify TBU instances based on the
mechanism and dynamics, and to estimate the final osmolarity at the TBU locus. The
results suggest that it might be possible to classify individual subjects and provide a
baseline for comparison and potential classification of DED subjects.
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1. Introduction

In this paper, we generate quantitative estimates of important parameters for the tear
film (TF) on the surface of the eye in healthy subjects. We do this with what we believe,
at the time of writing, to be unprecedented precision and quantity. The dataset cre-
ates a preliminary baseline for a small population of subjects without dry eye disease
(DED). The importance of this baseline is that it may be used to contrast what is found
for a population with DED, thus leading to better understanding of the mechanisms
at work in this disease that affects millions of people.1–4 Though this work does not
give a complete baseline for non-DED eyes, or a contrast with data for DED eyes, we
develop the method in detail and explain how it can reveal the mechanisms behind
individual instances of thinning and tear breakup (TBU) in the TF.

The introduction is structured as follows. Firstly, we give some background on
the TF, ocular surface, and DED. Secondly, we briefly discuss some related methods
for imaging the TF. Thirdly, we discuss methods to extract data about TF dynamics. Fi-
nally, we discuss mathematical models for TF dynamics, and best fits of those models
to data extracted from the TF.

1.1 Tear film

The TF plays an important role in vision and ocular surface health.5 The TF is estab-
lished during a blink, and lubricates the cornea and the conjunctival surfaces lining
the gap between the lids and the globe.6 The air/TF interface causes the TF to have
the most powerful refractive surface in the eye; thus, keeping that surface smooth
and regular is essential to clear vision.7 When the TF fails to uniformly coat the oc-
ular surface, it is said that TBU has occurred.8,9 TBU may cause the ocular surface
to be exposed to cooling10–12 and evaporation,13,14 and evaporation may lead to tear
hyperosmolarity15–18 and mechanical stimulus to the surface.19 The exposure of the
ocular surface to hyperosmolarity from TBU is thought to play a central role in the eti-
ology of DED,15,18 which affects millions of people.4 As a result of this significance, TBU
dynamics have been studied for more than 50 years using a variety of methods.8,20

Clinically, the instability of the TF is measured by the technique of tear breakup time
(TBUT), in which the time to the first break or irregularity of the TF is measured.
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1.2 Imaging methods

The imaging methods for TBU dynamics are numerous. Here we list a few of them:
visualization with dyes such as fluorescein;8,21 reflection of a pattern using a grid22 or
placido disc images;23 interferometry and spectrometry;24–28 simultaneous imag-
ing with FL imaging and retroillumination;17and simultaneous FL imaging with
interferometry.29.

These and other approaches have quantified various aspects of TF parameters
such as thickness, thinning rate, TBUT, and more. In this work, we focus on FL imag-
ing as an experimental method to collect data on aqueous layer (AL) dynamics. This
method is chosen due to the relatively low cost, ease of use, and widespread use in
the clinic. Clinically, short TBUTs indicate an unstable TF and the possible presence of
DED.20 Despite the utility of the method, repeatability from one clinician or researcher
to the next and one clinic to the next can be a challenge,30 though some maintain
that TBUT measurements can be generally repeatable under some circumstances.21

In this work, we aim to use automated detection of FL imaging to (i) repeatably ex-
tract FL imaging data of TF thinning and TBU, and subsequently to (ii) optimize the
fit of mathematical models to that data to identify mechanisms and (iii) estimate im-
portant parameters within TBU.

Efforts to automate TBU and DED measurements were recently reviewed by Vyas
and Mehta.31 Early efforts generally aimed at quantifying TBUT measurement and
related quantities.32,33 Vyas and Mehta31 surveyed various methods for automating
measurements and diagnoses, including: tear meniscus evaluation using optical co-
herence tomography;34 thermal imaging to attempt to diagnose DED;35 and FL imag-
ing of the TF for TBUT detection36 and DED diagnosis.37

1.3 Extraction of data

Our method in this paper is adapted from that of Su et al.36 In their system, a convolu-
tional neural network (CNN) is implemented that determines a region of interest (ROI)
where TBU is most likely to occur. Then, the ROI is followed in time and the first frame
where TBU is found determines the TBUT. Their method is trained on TBU and TBUT
data from experienced clinical researchers, and is therefore designed to imitate the
clinical determination of TBUT for the purpose of DED diagnosis. While we retained
the CNN design from their work, we introduced several changes to the approach of
Su et al.36 The method is adapted to identify multiple regions of TBU in every trial.
We extracted a time series of FL thinning data from each TBU region. We used that FL
imaging time series to determine TBUT (if appropriate) as well as optimal parameters
for mathematical models to determine important quantities of interest with thinning
and TBU areas. The optimal parameters allow us to identify the mechanism(s) driving
each instance of TBU.
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1.4 Mathematical models

A variety of mathematical modeling approaches for the TF have been developed. For
overall flows and concentrations of interest in the TF, there have been compartment
models, systems of ordinary differential equations (ODEs), or differential algebraic
equations (DAEs) that have included the effect of blinks38,39 and contact lenses.40,41

TBU and TF dynamics with contact lenses are beyond the scope of this paper.
A few categories of 1D partial differential equation (PDE) models in space and

time have been developed; this includes TF drainage for the open eye during the
interblink.42–44 Those models used a Newtonian fluid close to water in viscosity and
measured TF values. Boundary conditions at the end of the film mimicked the TF and
drove flows to redistribute TF. Effects added to this type of model include Marangoni
effects,45 evaporation,46 van der Waals wetting terms,47 and curvature of the ocular
surface.48 Local models for TF thinning and TBU include those which have been stud-
ied for the following effects: evaporation to air and osmosis from corneal surface49

and with FL;50 Marangoni effects;51 a non-polar lipid layer (LL);52,53 dewetting of the
ocular surface from long-range van der Waals forces;54,55 and dewetting of the ocu-
lar surface with mucin-dependent viscosity56,57 and membrane-associated mucins.58

Some models for TBU are discussed in more detail below.
Models for TF formation, which occurs during the opening phase of the blink cy-

cle, have been studied as well. A seminal work in this area is Wong et al.,43 which
treated the TF deposition as a thin film coating flow model; this is a cornerstone of
later papers although they modified the approach. Later models have included the ef-
fect of polar lipids via the Marangoni effect;59–62 partial blinks;63,64 a non-polar LL;52,65

the curvature of the ocular surface66; and non-Newtonian effects.67–69

Models for flow over the (2D) exposed ocular surface have been developed.70–75

The 2D models capture a number of aspects of the overall flows, osmolarity, and
FL imaging. Some 2D models may take into account the effect of blinking via time-
dependent flow boundary conditions with no lid motion,76 or via lid motion with
model problems plus simple boundary conditions,73 but there is much room to de-
velop blinking models.

Local models have been developed for flow in TBU regions. Peng et al.49 stud-
ied TBU driven by tear evaporation through a LL distribution that was fixed in space.
In their model, evaporation rate depended on the temperature of the ocular surface,
as well as the temperature, relative humidity, and wind conditions of the surround-
ings. They found that evaporation could drive the AL thickness to very small values
and thus TBU. Simple ODE models of TF thinning with osmosis could develop suffi-
ciently elevated osmolarity that could stop thinning and TBU;17,77 however, Peng et
al.49 found that diffusion of osmolarity (salt ions) out of the high concentration re-
gion within TBU prevented sufficient osmosis to stop TBU.49 A dynamic LL was intro-
duced in Stapf et al.53 The model consisted of 2 Newtonian layers: a relatively thick
and less viscous shear layer topped by a relatively thin but more viscous extensional
layer through which evaporation occurred. Stapf et al.53 found that TBU could occur,
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but the model could yield longer TBUTs than would be observed in vivo. This also
happened with models that incorporated mucin effects.56,58

Braun et al.50 simplified TF dynamics to a single layer for the AL with evaporation
modeled as a fixed Gaussian, but they included fluorescein concentration and FL in
their models of TBU. They found that the FL dynamics depended on initial FL concen-
tration, evaporation distribution width (related to TBU size), and film thickness in a
complicated way, but the mechanisms at work in various instances were clarified by
the model. Subsequently, models were proposed to include rapid thinning that could
be induced by excess lipid acting as a surfactant.51,78,79 The models explain many as-
pects of TBU, but they tend to overestimate the size of the TBU region.79

In this work, we use local models for TBU involving tangential flow, evaporation,
osmosis, and FL, but the models have been simplified to ODEs for the thickness, os-
molarity, fluorescein, and FL intensity.80 We find the optimal parameters for these
models that make them as close as possible to FL intensity data extracted from video
recordings of in vivo TFs. With those optimal parameters, we can infer which effects
are most important in each TBU instance. We use a CNN to extract data for many TBU
instances in order to get a more complete picture of TBU for the cohort of healthy
subjects studied.

1.5 Paper structure

This paper is structured as follows. The Methods section describes in some detail the
FL imaging used to generate data; the extraction method we used to obtain the de-
tailed thinning data; and mathematical methods and models used to fit that data and
determine TBU parameters of interest. In the Results section, we present the results
of applying these methods. In the Discussion section, we explain the context and sig-
nificance of the results. In the conclusion section, we summarize our findings and
discuss possible future directions.

2. Methods

2.1 Fluorescence imaging

The experimental data was collected at Indiana University and was approved by
the Biomedical Institutional Review Board of Indiana University. The principles
of the Declaration of Helsinki were followed during data collection, and informed
consent was obtained from all subjects. Data collection is described in a previous
publication19 and discussed in several papers,19,51,79–81 but will be summarized briefly
here. Twenty-five subjects with no self-reported history of DED, ocular surface or
systemic disease, or ocular surgery or medications affecting ocular sensation partic-
ipated in the study. Subjects were seated behind a slit-lamp biomicroscope and 2 µl
of 2% sodium fluorescein solution was instilled in the subject’s eye. Subjects were
asked to keep the tested eye open as long as possible (STARE trial) while the TF was
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imaged with a cobalt blue excitation filter over the illumination system and a Wratten
#12 filter over the observation port. With this illumination system, the AL of the TF
fluoresced green82 with dark areas appearing due to TBU.

A trial is the sequence of images of the subject’s eye following a few quick blinks.
The trial records the FL of the aqueous part of the TF. The trials typically start with a
FL concentration close to 0.2% (discussed more below), which is the so-called critical
concentration where peak FL occurs for thin TFs.83 The critical FL concentration may
also be expressed as 0.0053 M.80

2.2 TBU detection

We implemented a deep CNN84,85 similar to the one used by Su et al.36 to classify small
square patches within an image as belonging to eyelids, eyelashes, sclera, TBU, and
non-TBU. The architecture of the CNN is described in Table 1 and requires a total of
313,637 parameters for training.

Table 1. Architecture of the neural network trained to classify 96 × 96 RGB image tiles
Layer type Number Size Stride, Pad Output size Activation

Convolution 32 5 × 5 1,2 96 × 96 × 32 ReLU
Max pool 2 × 2 2,0 48 × 48 × 32

Convolution 32 5 × 5 1,2 48 × 48 × 32 ReLU
Average pool 3 × 3 2,1 24 × 24 × 32
Convolution 64 5 × 5 1,2 24 × 24 × 64 ReLU
Average pool 3 × 3 2,1 12 × 12 × 64
Convolution 64 5 × 5 1,0 8 × 8 × 64 ReLU
Average pool 3 × 3 2,1 4 × 4 × 64
Convolution 64 4 × 4 1,0 1 × 1 × 128 ReLU

Dropout, p = 0.4
Dense 5 softmax

In order to obtain training data, we selected videos from 56 different trials span-
ning 10 distinct subjects, dividing still frames into tiles of 192 × 192 pixels (at 5.8 µm
per pixel, tiles are 1.11 mm on a side). Selected tiles were then manually labeled into
the categories of eyelid, eyelash, sclera, and TF, according to their most dominant
feature in the context of the full image. The TF tiles were then sorted according to
whether sufficiently many pixels were at luminous intensity 60 or less (on a scale of
0–255). The dark TF tiles were labeled as TBU, while the others were labeled as non-
TBU. The total number of tiles labeled manually within each category is shown in Ta-
ble 2. In order to accommodate the use of 96 × 96 tiles by the CNN, the labeled tiles
were downsampled by a factor of 2 in each dimension. The data were then split so
that 80% (41,838) were used for training and 20% (10,460) for testing. The training set
was artificially augmented by applying random flips and 90-degree rotations to the
original tiles.
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Table 2. Number of labeled tiles within each category for training the neural network
Category Train Test Total
Eyelash 6460 1615 8075
Eyelid 2606 652 3258

Non-TBU 12976 3244 16220
Sclera 7879 1970 9849
TBU 11917 2979 14896
Total 41838 10460 52298

Table 3. Confusion matrix showing the results from training the neural network.
Category Eyelash Eyelid Non-TBU Sclera TBU Total
Eyelash 1400 98 17 32 68 1615
Eyelid 112 494 2 7 37 652

Non-TBU 5 0 3108 70 61 3244
Sclera 38 20 72 1790 50 1970
TBU 22 15 42 53 2847 2979
Total 1577 627 3241 1952 3063 10460

The classification results from the test images are given in the confusion matrix
shown in Table 3. Of particular interest is the precision and recall for the TBU (0.93
and 0.96, respectively) and for the non-TBU (0.96 for both). These results are more
than adequate for our purposes of extracting thinning and TBU data.

In order to detect TBU ROIs, each trial video was first stabilized using the location
of the Purkinje image of the lamp. Every frame of the stabilized video was overlaid
with a grid of 192 x 192 overlapping pixel tiles with a stride length of 32 pixels. The
tiles intersecting a detected corneal circle86 were downsampled, and tiles marked by
the CNN as very likely to be TBU were clustered to become ROIs. The locations were
recorded relative to a rectangle cropped closely to the detected corneal circle. This
process was continued throughout the video until at least 3 and as many as 5 distinct
ROIs were identified. Additional details are given in Appendix C.

2.3 Time series extraction

Within each ROI, the images at each time were downsampled and subjected to a slight
Gaussian blur, and a location was chosen within the ROI to sample the pixel intensity
of the blurred image; details appear in Appendix C.

Figure 1 shows example results of FL intensity data extraction for a single trial.
The top left shows an image from late in the trial with likely TBU boxes marked, while
the other plot shows intensity time series from the identified ROIs. As can be seen
from the plots, the shape of the intensity curve can vary from one TBU instance to the
next, even within the same trial. This phenomenon is not unexpected, since exam-
ples of different TBU mechanisms from the same subject have been reported in, e.g.,
simultaneous imaging experiments.29
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Fig. 1. (Left) One frame from the video of a trial, showing FL intensity in green and the loca-
tions of likely TBU instances as boxes. (Right) The intensity time series captured for the marked
boxes.

2.4 Model fitting

2.4.1 Models

A sketch showing the ingredients of the non-dimensional model is shown in Figure
2. Evaporative loss of water is given, in dimensionless form, by the constant Je = v.
The dimensionless supply of water from osmosis, which may result from hypertonic-
ity due to evaporation, is given by Jo = Pc(c − 1). Here Pc is a dimensionless per-
meability and c is the osmolarity. The divergent flow is given by the velocity field
u = g(t)x, and the strain rate ∂u/∂x = g(t) characterizes the flow. This flow is
constant throughout the thickness of the film, but varies along its length; the fluid is
simply being stretched.

We model TBU using a hierarchy of ODE models74,80 represented as a system of
non-dimensional equations:

dh

dt
= −g(t)h + Pc(c − 1) − v, (1)

d(hc)
dt

= −g(t)hc, (2)

for 0 ≤ t ≤ 1, after rescaling time by a scale ts. Here the unknowns are h(t), the
TF thickness, and c(t), the osmolarity. The dependent variables are normalized so
that h(0) = c(0) = 1. These values are found by scaling the dimensional variables
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Fig. 2. Sketch of ingredients in ODE models. The film is spatially uniform. It may be subject to
loss of water via evaporation, supply of water due to osmosis, and to divergent flow away from
the middle of the film. The thickness is given by h(t).

(primed) with:

h = h′

h0
, c = c′

c0
, (3)

where h0 is the initial film thickness and c0 is the isotonic osmolarity.
The function g(t) accounts for transverse flow and may take one of the following

3 functional forms:

Model O: g(t) ≡ 0, (4a)
Model F: g(t) = a, (4b)

Model D: g(t) = b1e−b2t. (4c)

The values a, b1, and b2 are considered constant parameters. In Model O there is no
fluid flow, so the model incorporates only evaporation and osmolarity. Model F adds
constant extensional flow, while Model D allows extensional flow that decays to zero.
Note that each model in Equation (4) is a generalization of the models above it. We
also considered an additional generalization allowing extensional flow that decays
from one non-zero value to another (g(t) = a + b1e−b2t), but we do not report cor-
responding results due to relatively poor identifiability of its parameters for some of
the data.

The parameters v, a, b1, and b2 (to the extent present) completely specify a model,
and the dimensional versions are optimized to fit experimental FL intensity data. The
parameters are non-dimensional and related to their dimensional (primed) counter-
parts by:

v = tsv′

h0
, a = tsa′, b1 = tsb′

1, b2 = tsb′
2, (5)
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where ts and h0 are characteristic time and length scales, respectively. In practice, we
choose ts as the duration of the observation window and h0 as the initial thickness of
the TF. We also have Pc = (PoVwc0)/(h0/ts), where the dimensional permeability of
the corneal surface, Po, is fixed, Vw is the molar volume of water, and c0 is the isotonic
osmolarity. Values for these dimensional parameters are given in the Appendix. The
permeability Po is not a parameter in the optimization because it is fixed;17 however,
Pc can vary while the other parameters are optimized. Parameter values are given in
Appendix B.

This spatially uniform model allows us to obtain the non-dimensional FL concen-
tration f(t) from scaling the osmolarity via:

f(t) = f0c(t), (6)

and the FL intensity from the film thickness and FL concentration via:

I(t) = I0
1 − exp[−ϕh(t)f(t)]

1 + f(t)2 , (7)

where I is FL intensity and ϕ is the (non-dimensional) Napierian extinction coefficient.87,88

Similarly to Pc, we have ϕ = ϵf h0fcr, which includes the dimensional extinction co-
efficient ϵf (value given in Appendix B). The value of ϕ varies from trial to trial because
so does h0. The constant I0 is used to match the initial observed intensity in the ex-
periment. Scaling both the experimental and theoretical FL intensities to start with
unit value is desirable for the fitting to be described next.

2.4.2 Fitting

For each video recording, the procedure of Wu et al.89 was used to estimate initial film
thickness h0 and initial fluorescein concentration f0. We excluded as unreasonable
all cases for which h0 is outside the range 1µm to 10µm or f0 > 0.35%. We use f0 as
the ratio between non-dimensional osmolarity and FL concentration throughout the
fit. The permeability parameter in Equation (1), Pc, varies during the optimization as
discussed in the previous section (see also Luke et al.80).

We excluded any intensity time series that showed substantial, sustained bright-
ening; while this may happen in vivo,29 we aim to fit thinning and TBU processes.
Within each time series, instantaneous values that were local outliers were removed,
and the time series was smoothed using an averaging filter. An iterative procedure
was then used to isolate a window of steepest average decrease lasting at least 3 sec-
onds and excluding initial increases and final increases or plateaus. This window was
judged to find the regime of thinning that the ODE models are best able to explain.
The intensity values were normalized by the initial value so that I(0) = 1 and we
determined I0 in Equation (7) to do that.
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Given the normalized time series Ik at times t0 = 0, t1, . . . , tN = 1, the objective
function for fitting ODE parameters was defined as the sum of squares:

1
N

N∑
k=0

[I(tk) − Ik]2 = 1
N

||I(tk) − Ik||22, (8)

where I(t) is from Equation (7), using the solution of Equations (1) and (2) and Equa-
tion (6) for h(t) and f(t). This objective was minimized over evaporation rate v and
the constants a, b1, b2 available in whatever form is chosen for g(t). Constrained min-
imization was performed using both the BFGS and Nelder-Mead algorithms to confirm
that the same minima were reached. The dimensional forms of the parameters were
constrained to physically plausible ranges: v′ from 0µm/min to 40µm/min, a′ from
−1 s−1 to 2 s−1, b′

1 from −1 s−1 to 5 s−1, and b2 from 0 s−1 to 2 s−1.
If, during ODE solution at a particular set of parameters, the numerical solution

satisfied the conditions ḣ(t) > 0 or İ(t) > 0 over a sustained time interval, the solver
was interrupted, and the optimization was given a penalty value to force selection of
different values. We made this choice because the models were designed for thinning
of the TF. Each optimization was attempted from multiple initializations in order to
explore the global parameter space.

Figure 3 shows fitting results for a particular ROI. Figure 3a shows that Models
F and D fit the data much better than does the evaporation-only Model O. Figure
3b shows that the better models incorporate convergent flow to replace fluid lost
to evaporation, which moderates the thinning (Fig. 3c) but increases the osmolarity
(Fig. 3d). While Model O found an optimal v′ at 7.72µm/min, Models F and D found
v′ = 17.8 and 20.0µm/min, respectively, indicating the dominance of evaporation in
the thinning.

Figure 4 shows fitting results for a different ROI. Here, Model D is clearly superior,
allowing a significant initial divergent flow that decays away. In this case, Model O
found v′ =10.0µm/min, while the other models found v′ ≈ 0. The osmolarity barely
increases at all when flow is active (Models F or D), in contrast to the evaporative case.
The FL concentration barely budges as well (proportional to the osmolarity), so the
intensity change is due almost exclusively to the change in thickness (see Eq. (7)).

Because the models form a hierarchy, the final residuals of the models must sat-
isfy Model O ≥ Model F ≥ Model D. As a result, the optimization of Model D was always
best, and so results below are reported in terms of its parameters. Those parameter
values can change dramatically between different instances of thinning and/or TBU.
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Fig. 3. Results of fitting to a ROI with evaporation-dominated thinning. (a) FL intensity time se-
ries data (dots) and the best fits of the model types O, F, and D. The bar graph shows the relative
residual norms of the fits. (b) The strain rate g(t), showing a convergent flow in the models that
allow it. (c) TF thickness in the 3 models. (d) Osmolarity and fluorescein concentration.
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Fig. 4. Results of fitting to a ROI with flow-dominated thinning. (a) FL intensity time series data
(dots) and the best fits of the model types O, F, and D. The bar graph shows the relative residual
norms of the fits. (b) The strain rate g(t), showing a divergent flow in the models that allow it.
(c) TF thickness.(d) Osmolarity and FL concentration.
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3. Results

In total, 467 time series were successfully fitted to mathematical models. We begin
discussing those cases by examining the initial conditions found for the analysis.

3.1 Initial conditions for fitting

We compare the distribution from the current results with other mathematical mod-
els and direct measurements of TF thickness. Creech et al.90 used the coating flow
model of Wong et al.43 to estimate the thickness of the deposited TF from the opening
phase of the blink. Our initial estimates for thickness are close to those of published
measurements,13,91 and appear closer to those experiments than other methods of
estimating it.90
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Fig. 5. The probability distributions of initial TF thickness estimates from three sources: Creech
et al.90 (n = 24) and Nichols et al.13 (n = 80) using interferometry, and this work (n = 467).

Figure 5 shows histograms of the probability of the thickness from 4 sources, in-
cluding the results from this work. One can see that our pre-corneal tear film (PCTF)
thickness estimates from FL data agree well with the 80 interferometric measure-
ments of Nichols et al.;13 that study discussed the possible sources of discrepancy
with the relatively broad distribution of 20 no-lens estimates from Creech et al.90
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Fig. 6. (Top) Distribution by probability of estimated initial FL concentrations f0 over all trials.
(Bottom) Initial thickness h0 vs f0 over all fitted locations. The value of f0 is the same for an
entire trial, but h0 can vary between locations within a trial.

based on coating flow theory. The 20 manual PCTF thickness estimates of Luke et
al.80 (not shown) form a narrow distribution that is easily within the experimental
range.13

The initial thickness estimates require estimates of the initial FL concentrations.
These are computed using the approach of Wu et al.89 The estimates for all subjects
are shown in Figure 6. The upper part of Figure 6 shows 2 peaks in the histogram.
Trials most often begin close to the critical concentration of 0.2%, which is the loca-
tion of the right peak. The left peak, approximately 0.1%, is due to the protocol for
the experiments. FL is not instilled for every trial so that 1 or 2 trials could occur be-
fore additional FL is instilled; tear turnover would reduce the FL concentration.83 The
lower part of the figure shows a scatter plot of the initial thickness and the initial FL
concentration. The two do not appear to be correlated; the initial thicknesses seem
uniformly spread across its range of values for all values of f0. As mentioned above,
the distribution of thicknesses estimated from the f0 in Figure 5 agrees quite well with
measured distributions of thickness.13
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Fig. 7. Scatter plot of evaporation and flow rates found from Model D fits to the data. The area
of each dot is proportional to the final osmolarity predicted by the model. Marginal histograms
show the distributions in probability of each parameter. The orange lines, drawn at 2µm/min
for evaporation and the median value 0.038 s−1 for flow, are used to color each sample to in-
dicate high/low rates of evaporation and flow.

3.2 Mechanism for all subjects

Figure 7 shows the results of all the fits as a scatter plot and marginal distributions
of dimensional evaporation rate v′ and initial flow rate b′

1, with dot sizes indicating
the final osmolarity value in the fitted model. The majority of the evaporation rates
are at or below 2µm/min, which agrees well with interferometric measurements of
central cornea thinning rates13 and previous fitting work.80 The specific choice of
2µm/min was taken from the distribution of PCTF thinning rates in Nichols et al.,13

which showed a transition from a highly peaked set of low rates to a broad set of
higher rates.

A key question for the models is the relative importance of evaporation rate and
tangential flow. We use the flow parameter b′

1, which is the initial strength of the tan-
gential flow, as the indicator of the importance of flow. Large positive values indicate
that divergent flow is important in TF thinning,78,79 while a negative value indicates a
convergent flow consistent with evaporation being a primary mechanism in thinning
and TBU.49,50 Figure 7 also shows lines drawn at 2µm/min for evaporation and the
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median value 0.038 s−1 for flow, partitioning the plot into 4 quadrants. The upper-
left quadrant features TBU with low evaporation and strong divergent flow, suggest-
ing that Marangoni-driven thinning dominates; a significant fraction of these cases
seem to have little evaporation involved. The lower-right quadrant contains high-
evaporation cases featuring little flow or an initially convergent flow whose strength
generally increases with the evaporation rate. This scenario is consistent with inward
tangential flow that tries to mitigate rapid evaporative loss.49,50,81 The upper-right
quadrant could be interpreted as a mixed mechanism, where both evaporation and
outward tangential flow cooperate to thin the TF. The lower-left quadrant represents
cases that may not have enough thinning of either type to be definitively called TBU;
we labeled these cases "good tear film" or GTF.
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Fig. 8. Scatter plot of evaporation rates v and final osmolarities ce found from Model D fits
to the data for all subjects. Marginal histograms show the distributions in probability of the
individual quantities. The coloring of the dots is the same as in Fig. 7, indicating low/high values
for evaporation rate and initial flow.

It is clear from Figure 7 that the osmolarity increases with the evaporation rate,
and the relationship is plotted explicitly in Figure 8. For reference, we note that nor-
mal TF osmolarity measured from the inferior meniscus is somewhat variable,92–94

reportedly averaging 301 mOsM in normal subjects, with diagnostic cutoffs for DED
ranging from 305–318 mOsM.92,93,95,96 However, a previous study suggests that the
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levels of TF hyperosmolarity over the cornea could be as high as 800–900 mOsM,16

much higher than the levels measured from the inferior meniscus.93,95 In this study,
the increase appears to be roughly linear for v′ below 10µm/min, but then the os-
molarity tends to level off and does not exceed 950 mOsM for this set of results. This
trend agrees with previous fitting results on fewer TBU instances79,80 and models with
strong outward flow.51 Previous theories of TF thinning and TBU that were not fit to
experimental data could give higher final values of the osmolarity.17,49,50 The distribu-
tion of final osmolarity values shows that for these healthy subjects, the osmolarity
remains below sensory threshold levels (450 mOsM16) in the majority of cases.

Figure 9 shows a scatter plot of the final osmolarity versus the initial strain rate b′
1

for all subjects. The final osmolarity is negatively correlated with flow: many more hy-
perosmolar endpoints appear for low flow, and relatively few for stronger flow. Fewer
hyperosmolar endpoints at high flow may be expected, but the wide range of osmo-
larity that may occur at moderate or low flow is again apparent in these results.
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Fig. 9. Scatter plot of initial flow rate b1 and final relative osmolarity ce found from Model D
fits to the data for all subjects. Marginal histograms show the distributions in probability of
the individual quantities. The coloring of the dots is the same as in Fig. 7, indicating low/high
values for evaporation rate and initial flow.
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The negative correlation observed for v′ and b′
1 helps explain the results in the os-

molarity. There are relatively few cases where flow is important for larger v′, and so
osmolarity is expected to become large in more of those cases. What may be more
surprising is that there is quite a range of flow strength for 2 ≤ v′ ≤ 20µm/min,
and this causes a relatively wide range of values in the osmolarity for that range of
v′. There is an overall trend, but the flow and evaporation can cooperate to give high
osmolarity in relatively short times, particularly for v′ ≤ 10µm/min. This was seen in
previous models to some degree,79,80 but with the current results this trend is more
dramatic. It is clear from these results that one cannot reliably estimate the final os-
molarity from the TBU time alone; one needs knowledge of the local evaporation and
flow conditions to get that estimate.
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Fig. 10. Scatter plot of relative final thicknesses he/h0 and final osmolarities ce found from
Model D fits to the data for all subjects. Marginal histograms show the distributions in proba-
bility of the individual quantities. The coloring of the dots is the same as in Fig. 7, indicating
low/high values for evaporation rate and initial flow.

Figure 10 shows a scatter plot and histograms for the final osmolarity ce and rel-
ative final thickness he/h0. The high-flow cases (red and purple dots) are correlated
with lower final osmolarity, but there is no clear association with the final thickness.
We also note that the fit interval here may not extend to full thickness TBUT in many
cases. This is because the parameters can be strongly affected if the fit interval is too



20 Driscoll et al.

long or a late plateau of low intensity is included, and for that reason, the fit intervals
could not be left too long.

3.3 Evaporation and thinning comparisons

Figure 11 shows a comparison of thinning-rate and evaporation-rate results from the
current work with experimental results.13 The experiment used narrow-band interfer-
ometry to measure thickness rates centrally in a 0.2 mm diameter spot; thinning rates
were computed from the slope of a best fit line that began 2 s after a blink. The distri-
bution of the measured thinning rates is within the values we found by fitting models
to FL intensity decrease. The evaporation rates we report do yield larger values than
the thinning rates in experiment. However, we note that the experiment can only de-
tect intensity change with time, and it cannot separate the evaporative-related and
flow-related contributions to TF thinning. Evaporative TBU can exhibit convergent
tangential flow,49,50 which can significantly slow thinning. Thus, it may be expected
that evaporation rate could (and perhaps should) exceed the thinning rate in such
cases.

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

thinning rate (μm/min)

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

pr
ob

ab
ili

ty

–dh/dt, Nichols et al. (2005), n=80

evaporation rate, n=467

average -dh/dt, n=467

Fig. 11. Comparison of thinning rate and evaporation distributions from 3 sources: experimen-
tal thinning rate −dh/dt (with thickening in 2 cases) from Nichols et al.13, as measured in a cen-
tral cornea spot of 0.2 mm diameter; evaporation rate v′ from this work; and average −dh/dt
from this work. See text for details.
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Fig. 12. Scatter plots of evaporation v′ (abscissa) and strain rates b′
1 (ordinate) separated by

experimental subject. Three subjects who had fewer than 20 fits each have been omitted. Cases
marked by a cross had a final osmolarity value above the 450 mOsM threshold of discomfort.
The orange lines and symbol colors have the same meaning as in Fig. 7.

3.4 Results by subject

Figure 12, like Figure 7, shows the fitting results for evaporation rate v′ and initial
strain (flow) rate b′

1, but plotted separately for each experimental subject. The plots
also use a cross symbol to indicate the cases in which the final osmolarity exceeded
the 450 mOsM discomfort threshold.16 The orthogonal lines in each subplot show the
boundaries that we chose between the different mechanisms. High-evaporation rate
cases are to the right of the vertical line at v′ = 2µm/min; high-flow cases are above
the horizontal line at the median value of b′

1, which is 0.038 s−1 (computed over all
trials and instances). The coloring scheme for the symbols is the same as in Figure 7.
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No subject displayed exclusively high-evaporation TBU, while a few were charac-
terized by low-evaporation rates. Most of the low-evaporation, low-flow cases that
may indicate GTF occurred in just 3 subjects. All subjects displayed some cases of
both positive (divergent) and negative (convergent) initial transverse flow, at rates
dispersed rather widely in most cases. It was fairly common to exceed the discom-
fort threshold due to high evaporation marked by convergent flow, while it was less
common to exceed the threshold with high divergent flow.

Table 4 shows results for the healthy subjects we studied. The table is in descend-
ing order of number of instances fit for each subject. The 4 possible mechanisms
are: (i) evaporation drives TBU; (ii) flow drives TBU; (iii) a mix of evaporation and flow
drives TBU; and (iv) a GTF where neither evaporation nor flow is very strong. The re-
sults show that on a population level, evaporation is the most common driver of TBU.
The second most common instance is flow, which has both small evaporation and
relatively large flow rates. The relative position with respect to v′ = 2µm/min and
b′

1 = 0.038 s−1 divided instances into these 4 classes; if greater than these threshold
values, the effect was important, and vice versa if less.

Table 4. For the 15 subjects that were fit, there were 4 possible mechanisms: evaporative
(Evap), flow, mixed (evaporation and flow) and GTF. The distribution of mechanisms for all in-
stances fit is given for each subject in descending order of number of instances fit. We excluded
the last 3 subjects from any subject-specific analysis because of the few instances of TBU fit.

Subject Evap Flow Mixed GTF Total
26 25 14 7 5 51
15 14 24 6 0 44
1 16 12 14 1 43

23 20 7 10 5 42
6 12 8 7 13 40

28 13 6 2 17 38
22 20 13 2 0 35
11 5 18 10 0 33
21 10 16 6 0 32
18 13 10 8 0 31
27 13 7 6 3 29
17 11 2 11 2 26
2 4 3 0 10 17

10 0 0 2 1 3
14 0 1 2 0 3
All 176 141 93 57 467
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We found that perturbing these threshold values around these points did not af-
fect the relative distribution of the mechanisms very strongly. However, there is still
some dependence on the choice of the boundaries. For example, if we used the over-
all median values for both v′ and b′

1, then the number of evaporation-driven and flow-
driven instances are equal, and the number of mixed and GTF cases are equal but
at approximately half the number of the other categories. While using the median
clearly has statistical rationale, we found experimental motivation for our choice of a
different v′. In contrast, there is no experimental guidance for b′

1 since there are no
direct measurements of flow in thinning, so we used this statistically based choice for
this parameter.
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Fig. 13. Scatter plots showing the locations of every fitted TBU for each of the top 12 subjects.
Each spot is located relative to a box fitted approximately around the cornea throughout the
trial; the data and squares are shifted and stretched slightly for alignment in this figure, and the
position of the cornea within the box is not constant during a trial or between different trials.
The color shows the model’s final value for osmolarity, with gray for values below the discom-
fort threshold of 450 mOsM16 and increasing saturation of red for values above the threshold.

From Table 4 we also see that the distribution of mechanisms may be different
from subject to subject. For example, subject 26 has a preponderance of evapora-
tive TBU cases, while subject 15 has a preponderance of flow TBU mechanisms. Fur-
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thermore, subjects 6 and 28 have a large fraction of GTF cases. This suggests that, in
some cases, it is possible to distinguish subjects based on their TBU mechanism dis-
tribution. Though the specific values may change for different mechanism selection
criteria, the distribution of values will still typically vary from subject to subject.

Figure 13 uses scatter plots to show the locations of every fitted TBU instance for
each of the 12 experimental subjects with at least 20 total fits. The location of each dot
is relative to a box approximately enclosing the average detected cornea throughout
its experimental trial; however, the cornea does not have fixed position within the box
during a trial or between different trials. The color of each dot is used to indicate the
fitted model’s final value of the osmolarity, with cases above the discomfort threshold
colored red. Each subject exhibited some potentially painful TBU instances, which is
consistent with the instructions given to the subjects in the experimental trials. Be-
cause this data came from sustained tear exposure (STARE) trials, this distribution
represents the stimulus to the cornea in life outside the clinic.

4. Discussion

In this paper, we have employed established methods of fitting mathematical mod-
els to FL intensity data80and applied them to automatically identified thinning or TBU
regions in healthy subjects. We modified the approach of Su et al.36 to identify mul-
tiple TBU ROIs in each trial. With those automatically identified thinning regions, we
had 12 subjects with a significant number of TBU instances over 2 visits and 10 trials
(although no subject yielded fits from all trials). The mechanisms for each thinning
and TBU were determined from the optimal coefficients from fitting the FL intensity
data. We found that each subject has a range of mechanisms associated with their
sample of TBU instances, and those distributions of mechanism may be sufficient to
distinguish between subjects. By pooling the results from all of the subjects, we had
a relatively large sample of 467 instances of thinning or TBU from 15 subjects.

A primary result is that the final osmolarity varies widely across the set of thinning
or TBU instances that we studied. This appears to happen for most subjects individ-
ually as well as for the pooled instances. For very rapid thinning with little evapora-
tion, or instances that turn out to thin very little, the final osmolarity stays low. For
instances that are driven by evaporation or mixed mechanism, the final osmolarity
rises to as much as 750 mOsM except for uncommon values reaching over 900 mOsM.
Because these results vary by subject, the results have the potential to distinguish
between subjects.

The results in this paper expand on prior efforts to fit FL intensity data in TF thin-
ning and TBU. PDE models showed the potential to fit the intensity TBU instances in
some cases,50,78 and to determine mechanisms that drive thinning and TBU.79,81. Sim-
plifying to local ODE models of TBU allowed for faster computation and freedom to
select more instances of TBU; 20 instances were fit by ODE models in Luke et al.80 The
data in this paper confirmed previously observed trends80 with more than 20 times
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the instances fit. We are unaware of other work that fits the dynamics of TBU with
mathematical models or estimates the parameters within TBU at this scale.

Experimental measurements of initial TF thicknesses include a range of approxi-
mately 2 to 10 µm using interferometry13,27 and similar values from optical coherence
tomography.91 The distribution of our initial thickness estimates matches those of in-
terferometry measurements very well. The values found via estimation in Creech et
al.90 give a wider range of thicknesses and a substantial fraction of thicker TF esti-
mates. Dursch et al.14 fit a model to the thinning and the temperature of the TF to
estimate the evaporation rate of the TF. To our knowledge, they did not determine
the osmolarity of the TF in TBU, but they did use imaging data from both FL intensity
and thermal imaging to determine TF parameters of interest.

We now turn to the strengths and weaknesses of our approach. The method iden-
tifies multiple instances of thinning and/or TBU from each trial. The system uses a
trained CNN to find ROIs from which minimum values of intensity in the ROI are ex-
tracted throughout the trial. The training of the CNN used labeled images with a fixed
threshold of intensity for TBU across all trials; the overall intensity of the trials var-
ied, however, so it would likely expand the number of trials that could be analyzed
to make that threshold for TBU trial-dependent. The ROIs are found near the end
of the trial, and this approach assumes that the thin regions are not moved around
by flow. However, it is possible that thinning begins elsewhere and flow moves the
thinning spot into the ROI during the first seconds of the trial;29 this type of dynamic
is beyond what our model can analyze at this time. Extracting the minimum inten-
sity after additional Gaussian blurring in the ROI gives acceptable FL intensity data
for fitting; however, the data is noisy even after the Gaussian filtering and smoothing.
There are other possible choices of method for extracting the intensity data, but our
approach did not seem to be too sensitive to what we attempted. Some instances
have rather little happening, but are relatively dark compared to their surroundings.
One could ask whether any GTFs should have been selected for fitting. It is unclear
at the time of writing whether this should be the case or not; a rather long trial looks
like nothing is happening but eventually TBU may occur, yet would still be rated as a
GTF. Not all trials or subjects can be analyzed by the automatic system for TBU. This
may be caused by lack of an inferior meniscus for estimating FL concentration, fail-
ure of the initial thickness estimate, poor recording of intensity data due to subject
movement or to image focus, or possibly other reasons. The relatively low number of
subjects could also be considered a limitation of the study.

FL is used for imaging, which may impact TF dynamics.97–99 The initial FL concen-
tration estimates show some systematic variation, possibly because 2 to 3 trials were
performed between each FL instillation. It is not clear whether a different instillation
protocol may improve our method. The variation in initial FL concentration did not
pose any difficulty for estimating the initial thickness in the cases that were fit by the
models, and may reduce variation between visits that may affect other tests such as
TBUT determination.100 The use of STARE trials does not represent healthy blinking
but it does ensure that thinning and TBU occurs.
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Despite these limitations, the method has produced repeatable data for hundreds
of instances of thinning and/or TBU. The data reveals trends in the conditions expe-
rienced by a cohort of healthy TF subjects. According to the model, within TBU the
final osmolarity is highly variable due to the differing mechanisms driving TBU; this is
lower than the upper limit suggested by some previous models without fitting,17,49,50

higher than flow-driven models initially suggested,78 and in agreement with previ-
ous models that fit FL intensity.80 The final osmolarity may be high within TBU but
appears to stay below 950 mOsM for this set of subjects, in agreement with the re-
sult of Liu et al.16 The evaporation and thinning rates appear to agree well with pub-
lished data,13 and the relationship between evaporation rate and final osmolarity is
revealed to be generally increasing with evaporation rate but is complicated by the
dependence on flow. The model determines optimal flow and evaporation values,
and the direction of flow (from the sign of b′

1) is a major part of determining the mech-
anism of an instance.

The DEWS II Diagnostic Methodology report20 recommended using non-invasive
TBUT to help diagnose DED rather than FL due the variations induced by the latter.9,21,97

The utility of each type of method is still an active area of research.99,101,102 Many of
these approaches average the results of 2 or 3 measurements, and may eliminate
outlying values, as suggested by Cho et al.21 and many others. Recent efforts have
tried to automate TBUT determination36 and DED diagnosis.37 Segev et al.28 found
breakup times based on mean values of AL thickness from two 40-second trials sepa-
rated by 45 min on average. We note that our approach is not aimed at using TBUT as
a method for diagnosis; we are refining the use of FL imaging to yield the mechanism
driving thinning and TBU for many instances in each healthy subject. We are at-
tempting to find the distribution of what can occur within healthy subjects, and there
appears to be significant variability within each subject and even within a single trial.
We are unaware of prior studies that investigated within-subject TBU variability. This
basic science data may have clinical application in classifying subjects based on their
thinning and/or TBU characteristics.

Some studies have noted and tried to exploit the distributions of TF parameters to
distinguish between subjects. An example is Bai et al.,103 where optical microscopy is
used to measure the LL thickness for healthy subjects and several conditions related
to meibomian gland dysfunction. The distribution of LL thickness over a small area is
analyzed for each subject and differences between conditions can be seen from these
distributions.

In this study, we identify parameters and mechanisms for multiple instances of
thinning in each subject. Those instances present varying amounts of chemical, ther-
mal, and mechanical stimuli to the ocular surface. The mechanism by which those
stimuli are sensed or received, and the role of that perception in DED, is a matter
of ongoing research.104 Various neural receptors are thought to play important roles
in sensing these different stimuli: chemical,104 thermal,105–107 and mechanical.19,108

While our work here cannot directly address such questions, we believe that quanti-
fying the stimulus at the ocular surface can only help to clarify such processes.
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In order to compute the fits to the extracted data, reasonable ROIs for extraction
must be found in each trial. For the healthy subjects that we used, less than half of the
trials yielded ROIs for analysis. Improving the robustness of the ROI detection would
be an efficient way to generate more data to characterize thinning and TBU instances
and the subjects in which they occur. Once ROIs are determined, there may be other
options than the ones we employed for extracting the thinning data. The FL images
were somewhat noisy, and despite filtering to minimize it, extracting local data may
be affected by that noise.

The estimates of initial FL concentration, and subsequently the initial thickness,
required a special procedure with low illumination intensity and a good inferior
meniscus. This may limit the trials and subjects that may be analyzed. Other possi-
ble ways to estimate these initial quantities may improve robustness of the method.
The method appears to work very well when estimates can be obtained, based on
comparison with interferometric in vivo results.

5. Conclusion and future perspectives

An important next step would be to apply the method to a sample of DED subjects
to compare with the data from healthy subjects. Combining our method with data
from simultaneous thermal imaging,14 interferometry,29 or sensory feedback and/or
sensory response16,19,109 could yield new insights.
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Appendix

A. Model derivation

Consider a rectangular control volume of −L′/2 ≤ x′ ≤ L′/2 and 0 ≤ y′ ≤ h′(t′);
this rectangle could be centered on Figure 2. The equations result from conserving
solvent (the AL’s water) and solutes (osmolarity, c′, and fluorescein concentration, f ′,
both in M) per unit width of the film. The water conservation is given by:

ρL′ dh′

dt′ = −J ′
eL′ + ρPoVw(c′ − c0)L′ − 2ρh′u′(L′/2, t′) (9)

where the (constant) evaporation rate is given by J ′
e = ρv′. The term on the left is

the rate of change of the mass of water in the control volume. The first term on the
right is the water lost due to evaporation; the second term is supply of water due to
osmosis. The remaining term is the total amount of water flowing out of the ends
from a depth-independent velocity field u′(x′, t′) = g′(t′)x′; this velocity along the
film is evaluated at x′ = ±L′/2. The time dependence is given by g′(t′) = b′

1e−b′
2t′

.
Conservation of solutes is given by:

L′ d(h′s′)
dt′ = −[2u′(L′/2, t′)]h′s′, (10)

where s′ = c′ or f ′. The term on the left is the rate of change of solute inside the
control volume, and the term on the right is the total amount of solute leaving the
sides of the control volume at x′ = ±L′/2.

Substituting u′(L′/2, t′) = g′(t′)L′/2 into the equations and rearranging gives,
for water:

dh′

dt′ = −v′ + PoVw(c′ − c0) − h′g′(t′), (11)

and for solutes:
d(h′s′)

dt′ = −g′(t′)h′s′. (12)

Substituting for g′(t′) and converting to non-dimensional variables via Equation (3)
and f ′ = fcrf results in the non-dimensional equations given in Section 2.4.1.
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B. Physical parameter values

The dimensional parameter values are given in Table 5. Dimensionless parameters
using typical values are given in Table 6. Note that because ϕ varies by instance of
thinning, and Pc varies in the optimization to fit each instance of thinning, we only
give typical values here.

Table 5. Dimensional parameters. Molar extinction coefficient110 has been multiplied by ln(10)
to convert it to the Napierian form.

Parameter Description Value
µ Viscosity111 1.3×10−3Pa·s
σ0 Surface tension112 0.045N·m−1

ρ Density (water) 103kg·m−3

h0 Characteristic thickness27 1 to 10 µm
ts Characteristic time scale [fit interval in s]
Po Tissue permeability of cornea17 12.0µm/s
Vw Molar volume (water) 1.8 × 10−5m3·mol−1

ϵf Naperian extinction coefficient110 1.75 × 107 m−1M−1

c′
0 Isotonic osmolarity94 302 mOsM3

fcr Critical fluorescein concentration87 0.2% (by mass)
v Experimental thinning rate27,47 −3 to 25 µm/min

Table 6. Dimensionless parameters that arise from scaling the dimensional fluid mechanics
problem. The values given are based upon the values of Table 5, h0 = 3 µm, and ts = 3 s.

Parameter Description Expression Value
Pc Permeability of cornea PoVwc0/(h0/ts) 0.0653
ϕ Napierian extinction coefficient ϵf fcrh0 0.279

C. Computational details

Here we give some details of the numerical procedures used to identify TBU instances
and to process and extract the intensity data.

The CNN described in Section 2.2 was trained in TensorFlow version 2. The loss
function used was categorical_crossentropy, the optimizer was ’adam’, for met-
rics we used ’accuracy’, and the batch size was 32.

To apply the trained CNN to find instances of thinning and TBU, each image is
cropped close to a circle automatically fit closely to the cornea.86 The CNN predictor
is applied within a 192 × 192 window that is moved in overlapping fashion using a
stride of 32 pixels. The window locations having a predicted TBU probability of 0.999
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or higher are collected and clustered with an unsupervised hierarchical clustering al-
gorithm (hcluster in scipy with 75 as the distance criterion). If closer than the crite-
rion, clustered tiles are merged. The process is started from the beginning of a trial
and continues until at least three distinct instances of apparent TBU are found. After
this process, a 192 × 192 box is centered on each cluster to serve as the TBU ROI.

Once the ROI is found, the portion of each image in the ROI box is downsampled
to 96 × 96, converted to gray scale, and blurred using a 21 × 21 Gaussian filter with
standard deviation σ = 5. Then, the minimum pixel location for each frame in the ex-
traction interval is found. The location to extract the intensity data is found by taking
the median of the minimum locations over all images after the first three seconds of
the trial.

Prior to analyzing the extracted data, three indicators of time series quality are
computed. First, the fraction of ROI minimum points lying within a 33 × 33 window
around the extraction location serves as a check on how much variance is in the min-
imizing point over trial time. Second, if the pixel intensity at the extraction location
when TBU is first predicted is greater than the value of 60 used for training the CNN,
then that instance might not truly represent TBU. Third, if the median intensity over
the first 10% of the time series compared to the median intensity over the last 10% did
not indicate a decrease of at least 25%, the time series might not show true thinning.
Any ROI that raised an exception to the tests was checked manually for inclusion or
exclusion.

Fitting the data to models was performed in Julia. Numerical solution of an ODE
model with proposed parameter values is computed by the DifferentialEquations
package with relative and absolute error tolerances of 10−10 and 10−11, respectively.
A solution is immediately terminated with a large penalty if either I(t) or h(t) is
found to be instantaneously increasing. The misfit of a proposed numerical solution
is calculated as the trapezoidal 2-norm of the difference between numerical solution
and data. The misfit is minimized by the NLopt package with box constraints and
relative and absolute error tolerances of 10−5 and 10−7, respectively. The optimizer
is initialized and run multiple times, with more complex model types including the
values found by simpler models for the same data. Optimization is performed by
Nelder-Mead but was checked by Levenberg-Marquardt for consistency over all the
time series.

Further details about the solution process can be obtained by inspecting the
code in the repository at https://github.com/tobydriscoll/fitting-ode-models-tear-
film-breakup.

https://github.com/tobydriscoll/fitting-ode-models-tear-film-breakup
https://github.com/tobydriscoll/fitting-ode-models-tear-film-breakup
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