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A block pseudospectral (BPS) method is proposed as a new way to couple pseu-
dospectral discretizations across interfaces in computations for a linear hyperbolic
system. The coupling is achieved via discretized derivative-matching conditions ob-
tained from the system. Compared to the standard technique of imposing compati-
bility conditions based on characteristics of the system, the BPS method offers better
stability and accuracy, especially in the case where equation coefficients are discontin-
uous. Computational examples for Maxwell’s equations in nonhomogeneous media
demonstrate that BPS retains high accuracy over times that are orders of magnitude
larger than those for not only low-order methods (such as Yee’s), but also high-order
methods, such as characteristic-based spectral elements.c© 1998 Academic Press

1. INTRODUCTION

For a linear hyperbolic system, such as Maxwell’s equations, waves change little as they
propagate over homogeneous regions that in applications are often large. Conceptually,
a high-order finite-difference method on a uniform grid would appear to be useful. Two
circumstances complicate matters.

• To accomodate irregular geometries and maximize parallelizability, the domain should
be split into fairly autonomous blocks.
• If approximations of spatial derivatives are based strictly on data interior to a block,

severe loss of accuracy may occur near the block edges.

1 This work was funded by an NSF Postdoctoral Research Fellowship.
2 Partial support provided by NSF and AFOSR.
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Note that the latter concern is valid even in a global (single-block) scheme. The traditional
answer to this concern is to cluster the grid quadratically as the block edge is approached,
leading to Chebyshev (or more general Jacobi-type) grids. The usual pseudospectral-
element method employs block Chebyshev grids and interface coupling via characteris-
tic inflow/outflow conditions [3, 4, 9, 10, 11, 12, 14, 15, 18]. However, grid clustering
introduces two drawbacks:

• a much stricter CFL condition, and
• depletion of the grids away from interfaces.

Our block pseudospectral (BPS) method is designed to allow the blocking of the domain
while reducing these drawbacks. (A very different approach to reducing grid nonuniformity
is the mapping technique due to Kosloff and Tal-Ezer [13].) The key idea in the BPS
approach is:

Accuracy can be gained by clustering a grid less and using the
approximations only well within the interior.

Nonperiodic pseudospectral (PS) methods are based on polynomial interpolation. Given
interpolation nodesxj , j = 1, . . . , N, the interpolation error for a smooth functionf is

f (x)− pN−1(x) = f (N)(ξ)

N!

N∏
j=1

(x − xj ) = f (N)(ξ)

N!
ψ(x)

for someξ ∈ [x1, xN ]. It is a classical result of approximation theory thatψ(x) is minimized
in the max-norm over [−1, 1] when the nodes are at Chebyshev locations. (Other Jacobi-
type distributions are essentially equivalent in this respect.) In Fig. 1 we compareψ(x) for
the Chebyshev and equispaced nodes forN = 10. The equispaced nodes lead to aψ(x)
that is large near the ends of the interval, as in the well-known Runge phenomenon.

However, we note that the equispaced approximation is actually much better overmost
of the interval. We will exploit this region of high accuracy by adjoiningfictitious pointsto
the computational domain, making it appear to be the interior part of an extended domain.
We will never compute derivative values at the fictitious points. (In practice, our grids will
be a compromise between equispaced and Chebyshev grids.)

FIG. 1. Interpolation remainder polynomialψ(x) for 10 equispaced and 10 Chebyshev nodes.



               

BLOCK PSEUDOSPECTRAL METHOD 49

The key issue in BPS becomes how to assign function values at the fictitious points for a
given block. We consider two alternatives, depending on the nature of the interface between
blocks:

1. Blocks meet where the medium is continuous. The fictitious values can be obtained by
interpolation from the interior of the neighboring block.

2. Blocks meet at a material interface (medium discontinuity). The derivatives of the
solution at the interface will generally be discontinuous, so straightforward interpolation is
inappropriate. However, we can derive analytic conditions that relate the solution derivatives
as taken from the two sides of the interface. By extending the one-sided finite-difference
stencils to include the fictitious points, we can impose discrete forms of the derivative
conditions to define the fictitious values. Similar techniques apply at domain boundaries.

To be specific about the second case, suppose in a 1D problem that each block (subin-
terval) has two fictitious points extending over a common material interface. To determine
the four unknown function values, we compute finite-difference weights (including the fic-
titious points) for one-sided derivatives up to order 3 at the interface. Imposing the analytic
relationships for those derivatives leads to a total of four discrete linear conditions, which
can be solved for the unknown function values. All derivatives within a block are then
computed using both the block-interior and fictitious values.

The derivative-matching strategy also works well in the continuous-medium case, and
we have used it for all the 1D examples in this paper. For 2D and 3D simulations we expect
that interpolation will be necessary, as outlined in the final section.

2. FINITE-DIFFERENCE VIEWPOINT OF PS METHODS

We consider nonperiodic discretizations of the computational domain [−1, 1] using grid
points−1 ≤ x1 < · · · < xN ≤ 1. Given the values of a functionf (x) at these points,
we want to approximatef ′(xj ), j = 1, . . . , N. One way to execute the FD approach is to
choose a stencil at eachxj , interpolate the given values off at its points by a minimal
degree polynomial, and then differentiate the interpolant atxj . More points in the stencil
translate into a higher order of accuracy in the method. When the grid points coincide with
those of a Jacobi polynomial pseudospectral method and the stencil to be used at each grid
point extends over all the grid points, then the FD approach is equivalent to the classical
PS method [8]. A similar result holds for periodic discretizations. However, the FD method
is defined for any grid, whereas the traditional PS methods are meaningful only on the
Jacobi-type grids (although one can make special modifications [5, 13]).

In practice, the FD algorithm is not implemented by repeated polynomial interpolation.
Instead, one computes each weightwm

jk that multiplies the valuef (xk) in the approximation
to f (m)(xj ). Often the weights are assembled into a differentiation matrix that operates on
vectors of function values to produce vectors of (approximate) derivative values. There are
fast, stable algorithms both for computing the weights for a given stencil and point and for
computing a complete differentiation matrix [8, 17]. A pseudospectral FD method has a
dense differentiation matrix, and computing a derivative with it takesO(N2) operations.1

For the discussion that follows, we want to control the amount of grid clustering near
the ends of the domain. Following [8], we introduce a parameterγ < 1 and define the grid

1 An advantage of Chebyshev grids is that the FFT can be used to evaluate derivatives, requiring onlyO(N log N)
work. However, in block methods, the values ofN are typically far too small for FFTs to have any benefit.
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FIG. 2. Positions of points in the closed grid defined by (1) withN = 20. The points are equispaced when
γ = 0 and become increasingly clustered near the ends asγ increases towards 1.

pointsxj for j = 0, . . . , N implicitly by

j

N
= ∫ xj

−1 cγ (1− x2)−γdx,

cγ =
0
(

3
2 − γ

)
√
π0(1− γ ) .

(1)

The grid defined by (1) is closed; i.e.,±1 are included. For the BPS method it will be useful to
have open grids, in which the endpoints are excluded. These are defined forj = 1, . . . , N by

j − 1
2

N
=
∫ xj

−1
cγ (1− x2)−γdx. (2)

Whenγ = 0 the points become equispaced throughout the interval. Whenγ = 1/2, the
open and closed grids coincide with the Gauss–Chebyshev and Gauss–Lobatto–Chebyshev
points respectively, which are quadratically clustered near±1. Figure 2 shows the positions
of the closed-grid points forN = 20 and continuously varyingγ . Traditionally one chooses
γ = 1/2, which leads to optimal error over [−1, 1] asN →∞. We will effectively choose
0< γ < 1/2 and restrict the use of the interpolant to a proper subinterval of [−1, 1].

3. FICTITIOUS POINT METHODS

The idea of fictitious points is to augment a grid with additional nodes at which the
function values are not directly known nor updated. The effect is to use the interpolant only
well within the interior of an extended interval. Figure 3 illustrates this by comparing the
interpolation remainderψ(x) for a fictitious-point grid to that for a Chebyshev grid.

To construct this particular grid, we start with a 10-node open grid defined by (2) with
γ = 0.35. Then we add one fictitious point per side of the interval by reflecting the
outer points about±1. Compared to a Chebyshev grid (γ = 0.5), the accuracy of the
fictitious point method is twice as good, even though the minimum spacing between true
(nonfictitious) nodes increases by a factor of about 1.5.
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FIG. 3. Interpolation remainder polynomialψ(x) for N = 10. The dashed curve is for the Chebyshev grid
(cf. Fig. 1); the solid curve was produced withγ = 0.35 and one fictitious node per side.

The fictitious point method must include a means of determining function values at the
fictitious points. At a domain boundary, the values are determined by supplementary bound-
ary conditions, typically involving derivatives of the solution. A study of this technique has
been done [7, 8] for the model eigenvalue problemu′′ = λu with u(±1) = 0, where the
additional conditions take the formu′′(±1) = 0, u′′′′(±1) = 0, . . . . The fictitious val-
ues are those which make an appropriate number of the finite-difference versions of the
conditions hold. It is found that as the number of fictitious points increases, the accept-
ableγ decreases and the outlying eigenvalues of the differentiation matrix become less
severe. Another example of using fictitious points with high-order methods is described
in [15a].

At an interface between two subdomains, two techniques are considered for determining
the fictitious values. The first technique is to obtain the required values by interpolation
from the neighboring subdomain. This reduces to a standard overlapping method, except
for the choice of grids. If the subdomain interface coincides with a material interface (dis-
continuous coefficients), however, the values obtained from direct interpolation would be
incorrect due to a loss of smoothness in the solution at the interface. In this case we return to
the idea of derivative conditions derived from the equations of the system. These conditions
will determine fictitious values, so the interpolants used will obey high-order relations at
the interface. Derivative matching works even when the coefficients are smooth, and we
have found it to have slightly better accuracy and stability properties than the interpola-
tion technique. Hence, derivative matching is used for all of the BPS simulations of this
paper.

4. DERIVATIVE MATCHING AT AN ELEMENT INTERFACE

We consider the standard intervalx ∈ [−1, 1], divided into two subintervals,I1 = [−1, ξ ]
and I2 = [ξ, 1]. We derive the BPS method for linear hyperbolic systems of the form

ut (t, x)+ A(x)ux(t, x) = B(x)u, −1≤ x ≤ 1, u ∈ Rd, (3)
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where

A(x) =
{

A1, if x ∈ I1,

A2, if x ∈ I2,
(4)

and the matrixB(x) has an analogous form. (We defer discussion of boundary conditions
until Section 5.) The prototypical situation we have in mind is electromagnetic radiation
passing through two simple dielectric materials. A more general spatial or time dependence
of the coefficient matrices requires a straightforward generalization of the derivation that
follows. The special case of an artificial interface occurs whenA1 = A2 andB1 = B2.

Given the values ofu at the spatial grid points of each subinterval at some time, our goal
is to find approximate values of the time derivativeut at those grid points. We want to use
primarily information local to a subinterval, with some coupling to its neighbors. Whileu
is required to be continuous, spatial derivatives ofu will not necessarily be continuous at
x = ξ . We denote the one-sided derivatives at the interface by

u(q)(t, ξ−) = ∂qu

∂xq

∣∣∣∣
x→ξ−

, u(q)(t, ξ+) = ∂qu

∂xq

∣∣∣∣
x→ξ+

.

By assumption, we have that

u(0)(t, ξ−) = u(0)(t, ξ+).

We also require thatut be continuous. Differentiating with respect to time, we find that

−A1u(1)(t, ξ−)+ B1u(0)(t, ξ−) = −A2u(1)(t, ξ+)+ B2u(0)(t, ξ+).

Staying strictly on one side of the interface atx = ξ , time differentiation is equivalent to the
operator(−A∂x + B), and the spatial differentiation operator commutes with the matrices.
Given a positive integerm, we make the definitions

A1 =


I
B1 −A1

B2
1 −(A1B1+ B1A1) A2

1
. . .

B2m−1
1 · · · · · · (−A1)

2m−1

 , U1 =


u(0)(t, ξ−)
u(1)(t, ξ−)

...

u(2m−1)(t, ξ−)

 ,
(5a)

where the block entries of rowq are the matrix coefficients of powers of∂x in (−A∂x+B)q.
With similar definitions forA2 andU2, we summarize the continuity of time derivatives up
to order 2m− 1 of u at ξ by the system

A1U1 = A2U2. (5b)

We impose these derivative conditions on the interpolants forI1 andI2. Fork = 1, 2, let
x(k)1 , . . . , x(k)Nk

be theNk grid points in the interior ofIk. Our interpolant forIk will extend
over theNk grid points andm fictitious points determined by reflection of grid points about
the linex = ξ , as illustrated in Fig. 4. To find the function values at the fictitious points,
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FIG. 4. Grid points forN1 = 6, N2 = 5, andm= 2. The fictitious points are shown as open circles.

we enforce discrete versions of the conditions (5). ForI1, we denote the FD weightsw(1)q j

in the approximations to derivatives atξ as

dq f

dxq
(ξ) ≈

N1+m∑
j=1

w
(1)
q j f

(
x(1)j

)
and define

W1 =


w
(1)
0,1 · · · w

(1)
0,N1+m

...
...

w
(1)
2m−1,1 · · · w

(1)
2m−1,N1+m

 , v1 =


u
(
t, x(1)1

)
...

u(t, x(1)N1+m)

 .
Recall thatu is a d-vector. To mapv1 to a discrete approximation ofU1, we must findd
zeroth derivatives,d first derivatives, etc. Thus, we want to multiply by the matrix

w
(1)
0,1Id w

(1)
0,2Id · · · w

(1)
0,N1+mId

w
(1)
1,1Id w

(1)
1,2Id · · · w

(1)
1,N1+mId

...
...

...

w
(1)
2m−1,1Id w

(1)
2m−1,2Id · · · w

(1)
2m−1,N1+mId

 ,

whereId is thed-dimensional identity matrix. Making similar definitions forI2 we write
compactly

A1(W1⊗ Id)v1 = A2(W2⊗ Id)v2 (6)

as the discrete form of (5). Here⊗ is Kronecker matrix multiplication.
Some remarks:

• The unknowns in Eq. (6) areu(t, x(1)N1+1), . . . ,u(t, x(1)N1+m), u(t, x(2)−m+1), . . . ,u(t, x(2)0 ).
These are determined by the 2md linear equations.
• The values of any component ofu on the fictitious points may be coupled to all the

values of all the components ofu.
• The procedure can be seen as an extrapolation based on derivative values atx = ξ , an

unstable procedure as the numbers of variables go to infinity. However, in practice one would
use few variables and treat the subintervals near the interface as a “boundary layer” having
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small spatial extent. This also prevents the Kronecker-product matrices from becoming
large.
• Because the weights for higher derivatives increase exponentially, the rows of the

weight matricesW1,2 should be rescaled to prevent severe ill-conditioning. We choose to
make the largest element in each row equal to one.

In a large application one might have many subintervals, each with an interior grid. For a
fixed subintervalIk, we addm fictitious points outside each end ofIk. The function values
for each group of fictitious points are determined as above (or via boundary conditions, as
described in Section 5) independently of other interfaces. Then the values are interpolated
over Ik and both sets of fictitious points simultaneously and differentiated. Hence, the
derivatives overIk depend on data only overIk and its immediate neighbors.

EXAMPLE (Maxwell’s equations). For Maxwell’s equations in nonconducting media,
the derivative relations for the BPS method take a particular, simple form. The equations
are, for transverse electric (TE) waves,

u =
[

E
H

]
, Ak =

[
0 1

εk
1
µk

0

]
, Bk = 0, k = 1, 2. (7)

As a result, the derivative relations for the electric componentE and magnetic component
H are decoupled. If

ρ = µ2ε2

µ1ε1
=
(

c1

c2

)2

,

then

E(q)(t, ξ+)
E(q)(t, ξ−)

= ρbq/2c, H (q)(t, ξ+)
H (q)(t, ξ−)

= ρb(q+1)/2c, (8)

wherec1, c2 are the propagation speeds andb·c represents rounding down to the nearest
integer. The differentiation matrices for the field components can be computed separately.

If either material has a finite nonzero conductivity, the relationships are more algebraically
complex. In this case the right-hand side matrix is of the form

Bk =
[−σk/εk 0

0 −σ ∗k /µk

]
, k = 1, 2, (9)

whereσ is electric conductivity andσ ∗ is an analogous magnetic loss (often zero for real
materials). The derivative relations now involveE andH simultaneously.

5. BOUNDARY CONDITIONS

We shall illustrate the treatment of boundary conditions by considering in detail the two
most important types for numerical simulations of Maxwell’s equations in CEM: the perfect
electric (resp. magnetic) conductor, at whichE= 0 (resp.H = 0); and an absorbing layer
meant to simulate radiation that leaves the computational domain.



           

BLOCK PSEUDOSPECTRAL METHOD 55

5.1. Perfect Conductor

Without loss of generality, we considerI1 = [−1, ξ ] and a perfect electric conductor at
x = −1. Our given condition isE(−1) = 0. Clearly, atx = −1,

0 = Et

= −1

ε
Hx − σ

ε
E

= −1

ε
Hx,

so Hx(−1) = 0. Similarly,

0= Ett = −1

ε
Hxt = c2Exx + σ ∗

εµ
Hx = c2Exx.

Continuing, we find thatE is an odd function andH is an even function aboutx = −1.
Now let us add them fictitious pointsx(1)−m+1 < · · · < x(1)0 < −1. We extend the

interpolants ofE and H to these points. To determine the field values at the extra points,
we impose the finite-difference forms of

∂q E

∂xq

∣∣∣∣
x=−1

= 0, q = 0, 2, . . . ,2m− 2,

∂q H

∂xq

∣∣∣∣
x=−1

= 0, q = 1, 3, . . . ,2m− 1.

The mechanics of this process are completely analogous to the algebra described in Section 4
for derivative matching. These 2m conditions determine the 2m unknown extra field values,
which are in turn used in the standard finite-difference procedure to findEx andHx. This
procedure is easily extended to the general hyperbolic system (3) with linear homogeneous
boundary conditions.

5.2. Absorbing Layer

A common technique for implementing an absorbing boundary is to impose a one-way
wave equation (OWWE) at the boundary point. It seems clear that no extension of grid
points past the boundary is appropriate for such a technique, since by premise there is no
additional information available at the boundary. To maintain accuracy and stability, we
would need to maintain a highly clustered grid near the boundary. One way to do this is to
replace the weight function that defines grid points in (2) by(1+ x)−1/2(1− x)−γ for the
boundary atx = −1, for example.

An attractive alternative to the OWWE, developed by Berenger [2], is the perfectly
matched layer (PML). The PML offers substantially less reflection at oblique angles in
multiple dimensions than do OWWE techniques. In one dimension the PML boils down to
padding the computational domain with a fictional lossy material satisfying

σ

ε0
= σ ∗

µ0
,

whereε0 andµ0 are properties of free space. The wave impedance of the PML medium
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then matches that of free space perfectly, mathematically preventing reflections at normal
incidence. Wave amplitudes in the PML material decay exponentially in space.

Implementing the PML method in BPS is therefore simply a matter of constructing a
material interface at the physical boundary as described in Section 4 and adding, say, a
perfect conductor to the far end of the layer.

6. NUMERICAL ACCURACY AND STABILITY

There are several parameters available in the BPS method. Given a hyperbolic problem
and boundary conditions, one may select subinterval sizes, the number of grid points in
each subinterval (Nk), grid clustering (γ ), and the number of fictitious points (m). We shall
only attempt to indicate accuracy and stability in a few cases. Our measure will be the
eigenvalues of the discretized approximation to the operator−A∂x + B, which would be
applied tou to findut in a method-of-lines solution.

We first consider the simplest scalar problem withA ≡ 1, B ≡ 0, and periodic boundary
conditions. The exact eigenvalues for this problem areλk = iπ/k for k ∈ Z. Figure 5 shows
the accuracy of the spectrum using the BPS method withξ = 0, N1 = N2 = 12, γ = 0.4,
andm= 1, 2, 4. For comparison, we also plot the accuracy using the differentiation matrix
with γ = 0.5 (standard Chebyshev grid) and coupling via characteristic variables. Hence-
forth we refer to this method as characteristic spectral elements (CSE). The eigenvalues
of the BPS method are more accurate than those for CSE for each choice ofm, and the
accuracy improves substantially withm. Surprisingly, the CSE method is slightly unstable,
as the spectral abscissa (maximum real part of the spectrum) is about 7× 10−3 here. This
instability could manifest itself in a long-time integration or a domain with very many
elements.

In Fig. 6 we plot the spectra of the discretized operators in the complex plane form= 4
and for the CSE method. The two methods feature roughly the same number of accurate
eigenvalues, but the outliers are located quite differently. In the BPS method, the outliers also
lie on the imaginary axis. This reflects the fact that the same differentiation matrix would

FIG. 5. Accuracy of BPS forut + ux = 0. The parameters areN1 = N2 = 12, γ = 0.4, andm = 1, 2, 4.
Eigenvalue accuracy is shown for 12 nonnegative values ofk. The BPS method is much more accurate than
standard CSE.
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FIG. 6. Spectra of BPS (m= 4) and CSE differentiation matrices for the problem of Fig. 5. The BPS method is
nondissipative because its treatment of interfaces is independent of the direction of flow, while the CSE method
is strongly dependent on upwinding.

be used for the problemsut − ux = 0 andut + ux = 0; the derivative matching conditions
would be unchanged. Hence the discrete spectrum is symmetric about the imaginary axis.
The CSE outliers, on the other hand, lie far in the left half-plane, because this differentiation
matrix (forut + ux = 0) would be “downwind” forut − ux = 0, and therefore unstable in
time (i.e., the differentiation matrix would be changed to reflect the new flow direction).

We next examine Maxwell’s equations in dielectric media havingµ1 = µ2 = 1, ε1 = 1,
ε2 = 4. We first set the interfaceξ = 0 and make the problem periodic, thus including an
interface at±1 as well. We will construct discrete approximations to the operator

−
[

0 1
ε(x) ∂x

∂x 0

]
. (10)

The exact eigenvalues include 2kπ i for any integerk, but there are also other eigenvalues
that can be easily determined numerically to high precision.

The characteristic-based CSE method can be extended to this problem. WithinI1, the
characteristic variablesE + c1H and E − c1H propagate with speedc1 to the right and
left, respectively. The characteristic variables and speeds are discontinuous at the interface
x = ξ , with c1 replaced byc2. At the interface, there are two values each ofEx and Hx

computed. One takes the quantityEx + c1Hx from I1 andEx − c2Hx from I2 to define the
values ofEx andHx used in both subintervals. This amounts to modifying two rows in the
analog of (10). A similar procedure is applied atx = ±1.

Figure 7 displays the accuracy of the spectrum obtained whenN1 = 10, N2 = 14,
andγ = 0.4 for m = 1, 2, 4. (More grid points are required where the wave speed is
smaller.) The BPS method is now much more accurate for all choices ofm than CSE (which
always usesγ = 0.5). The accuracy again improves withm. As before, the CSE matrix is
somewhat time-unstable, having spectral abscissa around 8× 10−3. The BPS eigenvalues
are very nearly on the imaginary axis—up to 10−8 or better.2

2 The number would be more like 10−14, except that the eigenvalue at zero is not simple and exhibits great
sensitivity to rounding errors.
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FIG. 7. Accuracy of derivative-matched BPS method for Maxwell’s equations through a medium discontinuity.
The parameters areN1 = 10, N2 = 14, γ = 0.4, andm = 1, 2, 4. Eigenvalue accuracy is shown for eigenvalues
in the complex upper half-plane. The BPS method is much more accurate than standard CSE (which is slightly
time unstable).

In Fig. 8 we show the corresponding results for the unequal-interval case, whereξ = 1/3
andN1 = N2 = 12. The results are qualitatively similar. CSE is still sightly unstable, with
roughly the same spectral abscissa as before, while BPS remains stable.

We do not wish to give the impression that the BPS method is stable for all situations.
There is a danger that the outlying eigenvalues, which are nominally on the imaginary axis,
will move off into the two half-planes. Factors causing this behavior certainly include the
parametersNk andm. Indeed, we have seen this behavior even with a smoothly varying
A(x). We are considering a number of ways to deal with this instability, but the simplest is

FIG. 8. Same as Fig. 7, but with interval lengths in the ratio 2 : 1 andN1 = N2 = 12. Stability is about the
same as before.
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to add a small artificial damping term such asεuxxxx to the differential equation. High-order
damping affects the high-frequency modes most strongly, and those are the troublesome
ones. Accuracy is hardly affected because these modes are dispersively incorrect in any
case, and we can limit the damping in space to the vicinity of the interfaces. In contrast, the
unstable CSE modes are at low wavenumbers; therefore damping would have to be much
more destructive to be effective.

7. COMPUTATIONAL EXAMPLES

It is well known that low-order finite-difference methods suffer from serious numerical
dispersion [8]. Prohibitively many grid points are necessary for long-time simulations.
Pseudospectral methods propagate more wavenumbers accurately. The improved eigenvalue
accuracy of BPS over CSE implies that BPS should be more accurate for very long times.

This is illustrated by our first example, the propagation of electromagnetic waves through
two idealized dielectric media.

Et = − 1

ε(x)
Hx,

Ht = − 1

µ
Ex,

 −1≤ x ≤ 1, (11)

whereµ ≡ 1 and the permittivityε(x) is given by

ε(x) =
{

1, if −1≤ x ≤ 0,
4, if 0 < x ≤ 1.

The wave speed is unity forx ∈ [−1, 0] and 1
2 for x ∈ (0, 1]. We apply periodic boundary

conditions. The initial electric field is a cosine bell centered atx = −0.5 and with half-width
0.3; the initial magnetic field is chosen so that all energy initially moves rightward.

Each time the pulse encounters a change of medium atx = 0 or x = ±1, it is split into
reflected and transmitted parts. As time evolves, there arise many reflections and transmis-
sions, but in this example such pulses coalesce with others centered at the same location.
Thus only a few distinct pulses can be seen at any one time. Figure 9 traces the local pulse
peaks and shows how they move. At each integer time, there are only three distinct pulses

FIG. 9. Schematic of the exact time history for the problem given by (11). The lines trace the paths of local
pulse peaks. At integer times, there are only three distinct pulses.
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present, centered at−1/2, 1/4, and 3/4. The analytical solution can easily be recovered at
these times.

In Figure 10 we compare fragments of the time histories ofE for four numerical so-
lutions. Each uses 34 spatial grid points and a time step of 0.01. The fragments begin at
times 0, 100, and 1000, respectively. The leftmost history is for the Yee or FDTD algorithm
[16, 19], using centered second-order time and space differences on staggered equispaced
grids. The next history uses fourth-order differences in space, again with staggered second-
order time stepping. The third plot shows the results of CSE, and the rightmost, for BPS, each
using a fourth-order Runge–Kutta method in time. In all cases, the time step is sufficiently
small so that time errors are insignificant.

The low-order methods are acceptable for very short times, but they bear little resemblance
to the exact solution byt = 100. The fourth-order method is somewhat more accurate than
second-order Yee. The CSE and BPS methods are nearly identical for small times. For
times around 100, CSE still bears some relation to the solution, but the noise level is high.
As mentioned above, CSE is weakly unstable for this problem, and instability dominates
by time 1000 (the vertical scale of the figure is 1000 times greater in this fragment). In
contrast, BPS still shows no significant degradation at time 1000. The infinity-norm errors
are shown as functions of time in Fig. 11. The instability of CSE is evident. Over the early
times 0≤ t ≤ 10, CSE and BPS are similar, while the Yee and FD4 methods quickly lose
accuracy. Also shown are the results of a 7-point spatial finite difference scheme which
has been “optimized” for propagation of intermediate wavenumbers [20]. Due to the low
resolution of the initial pulse, FD4 outperforms this method. Figure 12 compares, at certain
times, the analytical and numerical solutions for the four methods. The times are chosen

FIG. 11. Errors of the numerical solutions in time. On the time scale from 0 to 1000, only the BPS method is
acceptable—the instability of CSE is clear. On the shorter time scale from 0 to 10, the Yee, FD4, and “optimized”
finite-difference methods quickly lose accuracy, compared to the two spectral methods.
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FIG. 12. Snapshots of the numerical solutions of Fig 10. Yee, FD4, and CSE have lost substantial accuracy
already at times 4, 10, and 100, respectively, whereas the error in the BPS method is barely visible, even at time
1000.

such that the numerical solution begins to show significant inaccuracy, except for the BPS
case, in which the solution is visually accurate for allt ≤ 1000.

Our second example illustrates the simultaneous application of many of the devices
outlined in previous sections. The underlying equations are again Maxwell’s, with four
different media, including both an absorbing layer and a perfectly conducting boundary.
Figure 13 illustrates the problem and the subintervals used for the BPS solution.

FIG. 13. Material types and subintervals for the second computational example. The number of grid points
in each subinterval is displayed below it. Each subinterval grid uses spacing parameterγ = 0.35 andm = 2. At
every subdomain interface, four matching conditions are imposed.
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FIG. 14. Time history for the BPS numerical solution of the problem illustrated in Fig. 13.

Figure 14 shows the time history for a cosine bell of half-width 0.1 for the first 5 s. The
errors again remain small over long times. Since the initial pulse is supported over only 7
of the 64 grid points, this is a fairly severe test case for dispersive errors.

8. MULTIDIMENSIONAL APPLICATIONS

It is straightforward to extend the BPS method into tensor-product domains in higher
dimensions. The grid lines can be required to line up (i.e., a conforming discretization),
and derivative matching is imposed at each line. Because the grids are open rather than
closed, no special treatment need be used at the block corners. Experiments with wave
propagation over a square confirm that the BPS technique encounters no difficulties. We
expect that BPS will be highly competitive with existing low-order methods for problems
with discontinuous coefficients [1].

For more general domains, the standard spectral element approach is to divide the do-
main into generalized quadrilaterals that are individually transformed to squares. Derivative
matching would require explicit use of high derivatives of these transformations, so it is not
easily applicable in this form.

Instead, we propose a combination of overlapping and derivative matching using com-
posite grids [6]. Figure 15 shows a schematic representation of the idea. A high-order
finite-difference method on a regular grid is used over the large regions of homogeneous
material. Each arbitrary material interface is embedded within a thin region that is separately
transformed to a rectangular strip. In this strip, which contains the discontinuity, the BPS
method with derivative matching is used. The strips communicate with the background grid
via mutual high-order interpolation. Because the interpolation will be used over a relatively
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FIG. 15. Sketch of a composite grid method using BPS. A high-order finite-difference method is used on the
large areas of constant coefficients. In the vicinity of a discontinuity, the region is transformed to a rectangular one
in which BPS is applied. The grids are linked by mutual interpolation to determine the extreme grid point values
in the overlap.

small part of the domain, its cost should be negligible. The composite overlapping has at
present been successfully tested in 1D.

We believe that this technique can be used to efficiently solve general linear problems
with discontinuous coefficients. We are currently implementing the technique for some 2D
test problems.
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