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A block pseudospectral (BPS) method is proposed as a new way to couple pseu-
dospectral discretizations across interfaces in computations for a linear hyperbolic
system. The coupling is achieved via discretized derivative-matching conditions ob-
tained from the system. Compared to the standard technique of imposing compati-
bility conditions based on characteristics of the system, the BPS method offers better
stability and accuracy, especially in the case where equation coefficients are discontin-
uous. Computational examples for Maxwell’s equations in nonhomogeneous media
demonstrate that BPS retains high accuracy over times that are orders of magnitude
larger than those for not only low-order methods (such as Yee’s), but also high-order
methods, such as characteristic-based spectral elemesntss Academic Press

1. INTRODUCTION

For a linear hyperbolic system, such as Maxwell’s equations, waves change little as
propagate over homogeneous regions that in applications are often large. Concept
a high-order finite-difference method on a uniform grid would appear to be useful. T
circumstances complicate matters.

e Toaccomodate irregular geometries and maximize parallelizability, the domain she
be split into fairly autonomous blocks.

o If approximations of spatial derivatives are based strictly on data interior to a blo
severe loss of accuracy may occur near the block edges.

! This work was funded by an NSF Postdoctoral Research Fellowship.
2 Partial support provided by NSF and AFOSR.
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48 DRISCOLL AND FORNBERG

Note that the latter concern s valid even in a global (single-block) scheme. The traditior
answer to this concern is to cluster the grid quadratically as the block edge is approach
leading to Chebyshev (or more general Jacobi-type) grids. The usual pseudospect
element method employs block Chebyshev grids and interface coupling via characte
tic inflow/outflow conditions [3, 4, 9, 10, 11, 12, 14, 15, 18]. However, grid clustering
introduces two drawbacks:

e a much stricter CFL condition, and
o depletion of the grids away from interfaces.

Our block pseudospectral (BPS) method is designed to allow the blocking of the domz
while reducing these drawbacks. (A very different approach to reducing grid nonuniformi
is the mapping technique due to Kosloff and Tal-Ezer [13].) The key idea in the BP
approach is:

Accuracy can be gained by clustering a grid less and using the
approximations only well within the interior.

Nonperiodic pseudospectral (PS) methods are based on polynomial interpolation. Giy
interpolation nodeg;, j = 1,..., N, the interpolation error for a smooth functidnis

f(X) — pno1(X) = = ——Y¥(X)

<N>(s ¥ FN &)
H N!

forsomet € [xq1, Xn]. Itis a classical result of approximation theory tiigix) is minimized

in the max-norm over+1, 1] when the nodes are at Chebyshev locations. (Other Jacob

type distributions are essentially equivalent in this respect.) In Fig. 1 we compgaydor

the Chebyshev and equispaced nodedNfoe 10. The equispaced nodes lead t¢r &)

that is large near the ends of the interval, as in the well-known Runge phenomenon.
However, we note that the equispaced approximation is actually much bettenoser

of the interval. We will exploit this region of high accuracy by adjoinfiwgitious pointsto

the computational domain, making it appear to be the interior part of an extended doma

We will never compute derivative values at the fictitious points. (In practice, our grids wil

be a compromise between equispaced and Chebyshev grids.)
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FIG. 1. Interpolation remainder polynomigi(x) for 10 equispaced and 10 Chebyshev nodes.
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The key issue in BPS becomes how to assign function values at the fictitious points
given block. We consider two alternatives, depending on the nature of the interface bet\
blocks:

1. Blocks meet where the medium is continudine fictitious values can be obtained by
interpolation from the interior of the neighboring block.

2. Blocks meet at a material interface (medium discontinuityje derivatives of the
solution at the interface will generally be discontinuous, so straightforward interpolatio
inappropriate. However, we can derive analytic conditions that relate the solution deriva
as taken from the two sides of the interface. By extending the one-sided finite-differe
stencils to include the fictitious points, we can impose discrete forms of the deriva
conditions to define the fictitious values. Similar techniques apply at domain boundari

To be specific about the second case, suppose in a 1D problem that each block (s
terval) has two fictitious points extending over a common material interface. To detern
the four unknown function values, we compute finite-difference weights (including the
titious points) for one-sided derivatives up to order 3 at the interface. Imposing the ana
relationships for those derivatives leads to a total of four discrete linear conditions, wl
can be solved for the unknown function values. All derivatives within a block are tf
computed using both the block-interior and fictitious values.

The derivative-matching strategy also works well in the continuous-medium case,
we have used it for all the 1D examples in this paper. For 2D and 3D simulations we ex
that interpolation will be necessary, as outlined in the final section.

2. FINITE-DIFFERENCE VIEWPOINT OF PS METHODS

We consider nonperiodic discretizations of the computational domdin{] using grid
points—1 < x; < --- < Xy < 1. Given the values of a functioh(x) at these points,
we want to approximaté’(x;), j =1,..., N. One way to execute the FD approach is t
choose a stencil at each, interpolate the given values df at its points by a minimal
degree polynomial, and then differentiate the interpolant aMore points in the stencil
translate into a higher order of accuracy in the method. When the grid points coincide
those of a Jacobi polynomial pseudospectral method and the stencil to be used at eac
point extends over all the grid points, then the FD approach is equivalent to the clas
PS method [8]. A similar result holds for periodic discretizations. However, the FD mett
is defined for any grid, whereas the traditional PS methods are meaningful only on
Jacobi-type grids (although one can make special modifications [5, 13]).

In practice, the FD algorithm is not implemented by repeated polynomial interpolati
Instead, one computes each Weigrl‘}lll that multiplies the valud (x) in the approximation
to f ™ (x;). Often the weights are assembled into a differentiation matrix that operate:
vectors of function values to produce vectors of (approximate) derivative values. There
fast, stable algorithms both for computing the weights for a given stencil and point anc
computing a complete differentiation matrix [8, 17]. A pseudospectral FD method he
dense differentiation matrix, and computing a derivative with it taRebl?) operations.

For the discussion that follows, we want to control the amount of grid clustering n
the ends of the domain. Following [8], we introduce a parameterl and define the grid

1 An advantage of Chebyshev gridsis thatthe FFT can be used to evaluate derivatives, requiihgbiolg N)
work. However, in block methods, the valuesifare typically far too small for FFTs to have any benefit.
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FIG. 2. Positions of points in the closed grid defined by (1) with= 20. The points are equispaced when
y = 0 and become increasingly clustered near the englsiasreases towards 1.

pointsx; for j =0, ..., N implicitly by
ﬁ = [ ¢, (1—x»)77dx, "
1
e TG-v)
/AT —y)

The grid defined by (1) is closed; i.e:1 are included. For the BPS method it will be useful to
have open grids, in which the endpoints are excluded. These are defijed for. .., N by

i—3_ [
2 :/ ¢, (1—x3)7"dx. )
N -1

Wheny = 0 the points become equispaced throughout the interval. Wherl/2, the
open and closed grids coincide with the Gauss—Chebyshev and Gauss—Lobatto—Cheby
points respectively, which are quadratically clustered gelarigure 2 shows the positions
of the closed-grid points fdl = 20 and continuously varying. Traditionally one chooses
y = 1/2, which leads to optimal error over[L, 1]asN — oco. We will effectively choose
0 < y < 1/2 and restrict the use of the interpolant to a proper subinterval df 1].

3. FICTITIOUS POINT METHODS

The idea of fictitious points is to augment a grid with additional nodes at which th
function values are not directly known nor updated. The effect is to use the interpolant or
well within the interior of an extended interval. Figure 3 illustrates this by comparing th
interpolation remaindey (x) for a fictitious-point grid to that for a Chebyshev grid.

To construct this particular grid, we start with a 10-node open grid defined by (2) wit
y = 0.35. Then we add one fictitious point per side of the interval by reflecting the
outer points aboutt1l. Compared to a Chebyshev grid & 0.5), the accuracy of the
fictitious point method is twice as good, even though the minimum spacing between tr
(nonfictitious) nodes increases by a factor of about 1.5.
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FIG. 3. Interpolation remainder polynomigi(x) for N = 10. The dashed curve is for the Chebyshev gric
(cf. Fig. 1); the solid curve was produced with= 0.35 and one fictitious node per side.

The fictitious point method must include a means of determining function values at
fictitious points. At a domain boundary, the values are determined by supplementary bo
ary conditions, typically involving derivatives of the solution. A study of this technique h
been done [7, 8] for the model eigenvalue problgm= iu with u(+1) = 0, where the
additional conditions take the formn’(£1) = 0,u”(+1) = O, .... The fictitious val-
ues are those which make an appropriate number of the finite-difference versions o
conditions hold. It is found that as the number of fictitious points increases, the acc
abley decreases and the outlying eigenvalues of the differentiation matrix become
severe. Another example of using fictitious points with high-order methods is descri
in [15a].

At an interface between two subdomains, two techniques are considered for determ
the fictitious values. The first technique is to obtain the required values by interpola
from the neighboring subdomain. This reduces to a standard overlapping method, e
for the choice of grids. If the subdomain interface coincides with a material interface (i
continuous coefficients), however, the values obtained from direct interpolation woulc
incorrect due to a loss of smoothness in the solution at the interface. In this case we ret
the idea of derivative conditions derived from the equations of the system. These condi
will determine fictitious values, so the interpolants used will obey high-order relation:
the interface. Derivative matching works even when the coefficients are smooth, ant
have found it to have slightly better accuracy and stability properties than the interp
tion technique. Hence, derivative matching is used for all of the BPS simulations of
paper.

4. DERIVATIVE MATCHING AT AN ELEMENT INTERFACE

We consider the standard interxa& [—1, 1], divided into two subinterval$; = [—1, £]
andl, = [&, 1]. We derive the BPS method for linear hyperbolic systems of the form

Ur(t, X) + AUy (t, X) = B()u, —1<x<1, ueR", (3)
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where

Aq, if X e I4,
Ao, if X e PY

A(X) = { 4)

and the matrixB(x) has an analogous form. (We defer discussion of boundary condition
until Section 5.) The prototypical situation we have in mind is electromagnetic radiatic
passing through two simple dielectric materials. A more general spatial or time dependel
of the coefficient matrices requires a straightforward generalization of the derivation th
follows. The special case of an artificial interface occurs whgr= A; andB; = B,.

Given the values dfi at the spatial grid points of each subinterval at some time, our goz
is to find approximate values of the time derivatiyeat those grid points. We want to use
primarily information local to a subinterval, with some coupling to its neighbors. While
is required to be continuous, spatial derivativesi afill not necessarily be continuous at
x = &. We denote the one-sided derivatives at the interface by

d%u d%u
@t £7) = @t g+) —
udt, g7 = . U Eh) =
.57 axd *.&7) axd

X—>&~ X—£&+

By assumption, we have that
ut,£7) =u9t, &)
We also require that; be continuous. Differentiating with respect to time, we find that
—AUY(t, E7) + Blu Ot §7) = —AUD (L ET) + BuO(t, &),
Staying strictly on one side of the interfacexat &, time differentiation is equivalent to the
operator(— Adyx + B), and the spatial differentiation operator commutes with the matrices

Given a positive integan, we make the definitions

0 -
By —A U(l)(:,é_)
Ar=| B —(ABi+BiA) Al D | VI
’ y@m-1 t &
Bfm71 (_Al)Zm—l (t,&7)
(5a)

where the block entries of rogvare the matrix coefficients of powersadfin (— Ady + B)9.
With similar definitions forA, andif,, we summarize the continuity of time derivatives up
to order 2n — 1 of u at& by the system

Aty = Axlho. (5b)

We impose these derivative conditions on the interpolantfandl,. Fork = 1, 2, let
X, ..., x\ be theNy grid points in the interior of .. Our interpolant fory will extend
over theNg grid points andn fictitious points determined by reflection of grid points about

the linex = &, as illustrated in Fig. 4. To find the function values at the fictitious points,
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FIG. 4. Grid points forN; = 6, N, = 5, andm = 2. The fictitious points are shown as open circles.

we enforce discrete versions of the conditions (5). kowe denote the FD weightsélj)
in the approximations to derivativeségas

df poiy

S © = 2wy ()

i=1
and define

o5 @ @
Wo1  °° WoNg4m u(t, x;”)
Wl = . 9 U]_ =
@ @ @
Wom-11 "°° Wom-1,Ny+m U(t, XN, ¢m)
Recall thatu is ad-vector. To map; to a discrete approximation &f;, we must findd
zeroth derivativeq first derivatives, etc. Thus, we want to multiply by the matrix

] (1) 1)

)
wy1ld wyold T Wy N, +mld
. )
1) @ @
Wom-11ld Wam_12ld 0 Wom_qny4mld

wherely is thed-dimensional identity matrix. Making similar definitions fby we write
compactly

Ai(WL @ Ig)vy = Ao(Wo ® 1g)v2 (6)

as the discrete form of (5). Heg is Kronecker matrix multiplication.
Some remarks:

e The unknownsin Eq. (6) at&(t, X\, 1), - - -, U(t, Xi ) Ut X2, 0), -, Ut X5,

These are determined by thed linear equations.

e The values of any component ofon the fictitious points may be coupled to all the
values of all the components of

e The procedure can be seen as an extrapolation based on derivative value$ agn
unstable procedure as the numbers of variables go to infinity. However, in practice one w
use few variables and treat the subintervals near the interface as a “boundary layer” hi
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small spatial extent. This also prevents the Kronecker-product matrices from becomi
large.

e Because the weights for higher derivatives increase exponentially, the rows of t
weight matricesV; » should be rescaled to prevent severe ill-conditioning. We choose t
make the largest element in each row equal to one.

In a large application one might have many subintervals, each with an interior grid. Fol
fixed subintervaly, we addm fictitious points outside each end kf The function values
for each group of fictitious points are determined as above (or via boundary conditions,
described in Section 5) independently of other interfaces. Then the values are interpole
over Iy and both sets of fictitious points simultaneously and differentiated. Hence, tt
derivatives ovet depend on data only ovég and its immediate neighbors.

ExampLE (Maxwell's equations). For Maxwell's equations in nonconducting media,
the derivative relations for the BPS method take a particular, simple form. The equatio
are, for transverse electric (TE) waves,

E
- [g] -

1

0
L 3} Bq=0, k=12 @)

Mk

As a result, the derivative relations for the electric compofeahd magnetic component

H are decoupled. If
H2€2 (01)2
IO = = _ s
1€l C2

then

E@t. &) _ plas2l HO® &) _ pla+D/2l )

E@(t, &) H@(t, £-)

wherec,, ¢, are the propagation speeds gnflrepresents rounding down to the nearest

integer. The differentiation matrices for the field components can be computed separats
If either material has a finite nonzero conductivity, the relationships are more algebraica

complex. In this case the right-hand side matrix is of the form

—O‘k/ék 0

Bk = ) ,
0 —0y [k

k=12 9)

whereo is electric conductivity and* is an analogous magnetic loss (often zero for real
materials). The derivative relations now involzeandH simultaneously.

5. BOUNDARY CONDITIONS

We shall illustrate the treatment of boundary conditions by considering in detail the tw
most important types for numerical simulations of Maxwell’s equations in CEM: the perfec
electric (resp. magnetic) conductor, at whieh=0 (resp.H = 0); and an absorbing layer
meant to simulate radiation that leaves the computational domain.
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5.1. Perfect Conductor

Without loss of generality, we consider = [—1, £] and a perfect electric conductor at
X = —1. Our given condition i€ (—1) = 0. Clearly, atx = —1,

0: Et
1 o
=_—"Hy— —E
€ €
1
:_—Hx,
€

SO0 Hy(—1) = 0. Similarly,

1 o*
O=Eyt=——Hx= CZEXX + —Hx = CZExx~
€ €n

Continuing, we find thaE is an odd function andl is an even function about= —1.

Now let us add them fictitious pointsx),; < --- < x{” < —1. We extend the
interpolants ofE andH to these points. To determine the field values at the extra poir
we impose the finite-difference forms of

09E

9= =0, g=0,2,...,2m—2,
x4 X=-1

99H

- =0, g=13,...,2m—-1
ax4a x=—1

The mechanics of this process are completely analogous to the algebra described in Se«
for derivative matching. Thesar2conditions determine then2unknown extra field values,
which are in turn used in the standard finite-difference procedure td&jrahd Hy. This
procedure is easily extended to the general hyperbolic system (3) with linear homoger
boundary conditions.

5.2. Absorbing Layer

A common technique for implementing an absorbing boundary is to impose a one-
wave equation (OWWE) at the boundary point. It seems clear that no extension of
points past the boundary is appropriate for such a technique, since by premise there
additional information available at the boundary. To maintain accuracy and stability,
would need to maintain a highly clustered grid near the boundary. One way to do this
replace the weight function that defines grid points in (2by x)~%/?(1 — x)~" for the
boundary ak = —1, for example.

An attractive alternative to the OWWE, developed by Berenger [2], is the perfec
matched layer (PML). The PML offers substantially less reflection at oblique angle:
multiple dimensions than do OWWE techniques. In one dimension the PML boils dow
padding the computational domain with a fictional lossy material satisfying

o o*

- 9
€0 Ko

whereeg and o are properties of free space. The wave impedance of the PML medi
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then matches that of free space perfectly, mathematically preventing reflections at nort
incidence. Wave amplitudes in the PML material decay exponentially in space.

Implementing the PML method in BPS is therefore simply a matter of constructing
material interface at the physical boundary as described in Section 4 and adding, sa
perfect conductor to the far end of the layer.

6. NUMERICAL ACCURACY AND STABILITY

There are several parameters available in the BPS method. Given a hyperbolic probl
and boundary conditions, one may select subinterval sizes, the number of grid points
each subintervalNy), grid clustering ¢), and the number of fictitious pointsj. We shall
only attempt to indicate accuracy and stability in a few cases. Our measure will be t
eigenvalues of the discretized approximation to the operatdi, + B, which would be
applied tou to find u; in a method-of-lines solution.

We first consider the simplest scalar problem witk= 1, B = 0, and periodic boundary
conditions. The exact eigenvalues for this problentare: i /k fork € Z. Figure 5 shows
the accuracy of the spectrum using the BPS method §vithO, N; = N, =12,y = 0.4,
andm = 1, 2, 4. For comparison, we also plot the accuracy using the differentiation matri
with y = 0.5 (standard Chebyshev grid) and coupling via characteristic variables. Henc
forth we refer to this method as characteristic spectral elements (CSE). The eigenval
of the BPS method are more accurate than those for CSE for each chaigeant! the
accuracy improves substantially witth Surprisingly, the CSE method is slightly unstable,
as the spectral abscissa (maximum real part of the spectrum) is akol® 7 here. This
instability could manifest itself in a long-time integration or a domain with very many
elements.

In Fig. 6 we plot the spectra of the discretized operators in the complex planme£fod
and for the CSE method. The two methods feature roughly the same number of accul
eigenvalues, butthe outliers are located quite differently. In the BPS method, the outliers a
lie on the imaginary axis. This reflects the fact that the same differentiation matrix wou

k

-
o
&

errorin A

10|

-
o

12

FIG. 5. Accuracy of BPS fou; + uy = 0. The parameters afd; = N, = 12,y = 0.4, andm = 1,2, 4.
Eigenvalue accuracy is shown for 12 nonnegative valude dhe BPS method is much more accurate than
standard CSE.
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FIG.6. Spectraof BPS( = 4) and CSE differentiation matrices for the problem of Fig. 5. The BPS method
nondissipative because its treatment of interfaces is independent of the direction of flow, while the CSE m
is strongly dependent on upwinding.

be used for the problemg — uy = 0 andu; + uyx = 0; the derivative matching conditions
would be unchanged. Hence the discrete spectrum is symmetric about the imaginary
The CSE outliers, on the other hand, lie far in the left half-plane, because this differentis
matrix (foru; + uy = 0) would be “downwind” foru; — ux = 0, and therefore unstable in
time (i.e., the differentiation matrix would be changed to reflect the new flow direction)
We next examine Maxwell’'s equations in dielectric media haying= u, = 1,¢; = 1,

€2 = 4. We first set the interface = 0 and make the problem periodic, thus including a
interface att1 as well. We will construct discrete approximations to the operator

1
_[; d%%]. (10)
X

The exact eigenvalues includksz for any integek, but there are also other eigenvalue:
that can be easily determined numerically to high precision.

The characteristic-based CSE method can be extended to this problem. Wijttiia
characteristic variableE + ¢;H andE — c;H propagate with speeti to the right and
left, respectively. The characteristic variables and speeds are discontinuous at the inte
X = &, with ¢; replaced byc,. At the interface, there are two values eachEgfand Hy
computed. One takes the quantity + c; Hy from I; andE, — c;Hy from I, to define the
values ofEy andHy used in both subintervals. This amounts to modifying two rows in tt
analog of (10). A similar procedure is appliedxat £1.

Figure 7 displays the accuracy of the spectrum obtained wier= 10, N, = 14,
andy = 0.4 form = 1, 2,4. (More grid points are required where the wave speed
smaller.) The BPS method is now much more accurate for all choigasten CSE (which
always usey = 0.5). The accuracy again improves with As before, the CSE matrix is
somewhat time-unstable, having spectral abscissa arounti(83. The BPS eigenvalues
are very nearly on the imaginary axis—up to 3@r better?

2 The number would be more like 18, except that the eigenvalue at zero is not simple and exhibits gre
sensitivity to rounding errors.
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FIG.7. Accuracy of derivative-matched BPS method for Maxwell's equations through a medium discontinuit
The parameters afd; = 10, N, = 14, y = 0.4, andm = 1, 2, 4. Eigenvalue accuracy is shown for eigenvalues
in the complex upper half-plane. The BPS method is much more accurate than standard CSE (which is slig
time unstable).

In Fig. 8 we show the corresponding results for the unequal-interval case, §vhelg3
andN; = N, = 12. The results are qualitatively similar. CSE is still sightly unstable, with
roughly the same spectral abscissa as before, while BPS remains stable.

We do not wish to give the impression that the BPS method is stable for all situatior
There is a danger that the outlying eigenvalues, which are nominally on the imaginary ax
will move off into the two half-planes. Factors causing this behavior certainly include th
parameters\, andm. Indeed, we have seen this behavior even with a smoothly varyin
A(x). We are considering a number of ways to deal with this instability, but the simplest

10

-
(=]
<

errorin xk
°
&

25

FIG. 8. Same as Fig. 7, but with interval lengths in the ratio 2: 1 Alad= N, = 12. Stability is about the
same as before.
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to add a small artificial damping term sucheaigxxx to the differential equation. High-order
damping affects the high-frequency modes most strongly, and those are the trouble
ones. Accuracy is hardly affected because these modes are dispersively incorrect i
case, and we can limit the damping in space to the vicinity of the interfaces. In contrast
unstable CSE modes are at low wavenumbers; therefore damping would have to be
more destructive to be effective.

7. COMPUTATIONAL EXAMPLES

It is well known that low-order finite-difference methods suffer from serious numeric
dispersion [8]. Prohibitively many grid points are necessary for long-time simulatio
Pseudospectral methods propagate more wavenumbers accurately. The improved eige
accuracy of BPS over CSE implies that BPS should be more accurate for very long tir

This is illustrated by our first example, the propagation of electromagnetic waves thrc
two idealized dielectric media.

1
Et = ———Hy,
€(X)
1 —1<x<1, (11)
Ht = __EX9
nw

whereu = 1 and the permittivity: (X) is given by

€(x) = 1, if-1<x<0,
14, if0<x<1.

The wave speed is unity for e [—1, 0] and% for x € (0, 1]. We apply periodic boundary
conditions. The initial electric field is a cosine bell centered at —0.5 and with half-width
0.3; the initial magnetic field is chosen so that all energy initially moves rightward.
Each time the pulse encounters a change of mediwm=a0 orx = +1, it is split into
reflected and transmitted parts. As time evolves, there arise many reflections and tran
sions, but in this example such pulses coalesce with others centered at the same loc
Thus only a few distinct pulses can be seen at any one time. Figure 9 traces the local
peaks and shows how they move. At each integer time, there are only three distinct p

0 1 2 3 4 5 6 7 8
FIG. 9. Schematic of the exact time history for the problem given by (11). The lines trace the paths of It
pulse peaks. At integer times, there are only three distinct pulses.
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FIG.10. Timehistory fragmentsof E for four numerical methodsfor (11). Thefirst two use second- and fourth-order spatial differences on staggered

equispaced grids and second-order time stepping. The other two use CSE and BPS, respectively, with fourth-order Runge—Kuttain time. Thelast fragment

of CSE ison the scale —1000 to 1000. There are 34 spatial grid pointsin all cases. Only for BPS are the pulses clearly visible throughout.
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present, centered atl/2, 1/4, and 34. The analytical solution can easily be recovered
these times.

In Figure 10 we compare fragments of the time historie€dbr four numerical so-
lutions. Each uses 34 spatial grid points and a time step of 0.01. The fragments bec
times 0, 100, and 1000, respectively. The leftmost history is for the Yee or FDTD algorit
[16, 19], using centered second-order time and space differences on staggered equis
grids. The next history uses fourth-order differences in space, again with staggered se:
order time stepping. The third plot shows the results of CSE, and the rightmost, for BPS,
using a fourth-order Runge—Kutta method in time. In all cases, the time step is sufficie
small so that time errors are insignificant.

The low-order methods are acceptable for very shorttimes, butthey bear little resembl
to the exact solution biy= 100. The fourth-order method is somewhat more accurate th
second-order Yee. The CSE and BPS methods are nearly identical for small times
times around 100, CSE still bears some relation to the solution, but the noise level is |
As mentioned above, CSE is weakly unstable for this problem, and instability domin:
by time 1000 (the vertical scale of the figure is 1000 times greater in this fragment)
contrast, BPS still shows no significant degradation at time 1000. The infinity-norm er!
are shown as functions of time in Fig. 11. The instability of CSE is evident. Over the e:
times 0<t < 10, CSE and BPS are similar, while the Yee and FD4 methods quickly Ic
accuracy. Also shown are the results of a 7-point spatial finite difference scheme w
has been “optimized” for propagation of intermediate wavenumbers [20]. Due to the
resolution of the initial pulse, FD4 outperforms this method. Figure 12 compares, at cel
times, the analytical and numerical solutions for the four methods. The times are ch
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FIG.11. Errors of the numerical solutions in time. On the time scale from 0 to 1000, only the BPS metho
acceptable—the instability of CSE is clear. On the shorter time scale from 0 to 10, the Yee, FD4, and “optimi
finite-difference methods quickly lose accuracy, compared to the two spectral methods.
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FIG. 12. Snapshots of the numerical solutions of Fig 10. Yee, FD4, and CSE have lost substantial accur:
already at times 4, 10, and 100, respectively, whereas the error in the BPS method is barely visible, even at |

1000.

such that the numerical solution begins to show significant inaccuracy, except for the B

case, in which the solution is visually accurate fortatt 1000.

Our second example illustrates the simultaneous application of many of the devic
outlined in previous sections. The underlying equations are again Maxwell’'s, with fol
different media, including both an absorbing layer and a perfectly conducting boundal

Figure 13 illustrates the problem and the subintervals used for the BPS solution.
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FIG. 13. Material types and subintervals for the second computational example. The number of grid poir
in each subinterval is displayed below it. Each subinterval grid uses spacing pararae@B5 andm = 2. At

every subdomain interface, four matching conditions are imposed.
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FIG. 14. Time history for the BPS numerical solution of the problem illustrated in Fig. 13.

Figure 14 shows the time history for a cosine bell of half-width 0.1 for the first 5s. T
errors again remain small over long times. Since the initial pulse is supported over or
of the 64 grid points, this is a fairly severe test case for dispersive errors.

8. MULTIDIMENSIONAL APPLICATIONS

It is straightforward to extend the BPS method into tensor-product domains in hig
dimensions. The grid lines can be required to line up (i.e., a conforming discretizati
and derivative matching is imposed at each line. Because the grids are open rathel
closed, no special treatment need be used at the block corners. Experiments with
propagation over a square confirm that the BPS technique encounters no difficulties
expect that BPS will be highly competitive with existing low-order methods for probler
with discontinuous coefficients [1].

For more general domains, the standard spectral element approach is to divide th
main into generalized quadrilaterals that are individually transformed to squares. Deriv:
matching would require explicit use of high derivatives of these transformations, so it is
easily applicable in this form.

Instead, we propose a combination of overlapping and derivative matching using ¢
posite grids [6]. Figure 15 shows a schematic representation of the idea. A high-o
finite-difference method on a regular grid is used over the large regions of homogen
material. Each arbitrary material interface is embedded within a thin region that is separ
transformed to a rectangular strip. In this strip, which contains the discontinuity, the E
method with derivative matching is used. The strips communicate with the background
via mutual high-order interpolation. Because the interpolation will be used over a relatiy
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N

FIG. 15. Sketch of a composite grid method using BPS. A high-order finite-difference method is used on tt
large areas of constant coefficients. In the vicinity of a discontinuity, the region is transformed to a rectangular
in which BPS is applied. The grids are linked by mutual interpolation to determine the extreme grid point valu
in the overlap.

small part of the domain, its cost should be negligible. The composite overlapping has
present been successfully tested in 1D.
We believe that this technique can be used to efficiently solve general linear problel

wit

h discontinuous coefficients. We are currently implementing the technique for some 2

test problems.
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