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The Schwarz-Christoffel transformation and its variations yield formulas for conformal maps
from standard regions to the interiors or exteriors of possibly unbounded polygons. Computa-
tions involving these maps generally require a computer, and although the numerical aspects
of these transformations have been studied, there are few software implementations that are
widely available and suited for general use. The Schwarz-Christoffel Toolbox for MATLAB is a
new implementation of Schwarz-Christoffel formulas for maps from the disk, half-plane, strip,
and rectangle domains to polygon interiors, and from the disk to polygon exteriors. The
toolbox, written entirely in the MATLAB script language, exploits the high-level functions,
interactive environment, visualization tools, and graphical user interface elements supplied
by current versions of MATLAB, and is suitable for use both as a standalone tool and as a
library for applications written in MATLAB, Fortran, or C. Several examples and simple
applications are presented to demonstrate the toolbox’s capabilities.

Categories and Subject Descriptors: G.1.m [Numerical Analysis]: Miscellaneous; G.4 [Math-
ematics of Computing]: Mathematical Software—MATLAB; J.2 [Computer Applications]:
Physical Sciences and Engineering

General Terms: Algorithms

Additional Key Words and Phrases: Numerical conformal mapping, Schwarz-Christoffel
transformation

1. INTRODUCTION

Conformal mapping has long been an important topic in complex analysis,
with applications in many fields of physics and mathematics. Historically, one
of the major limitations of these applications has been the difficulty of
computing conformal maps for general regions. The advent of the modern
computer, however, has vastly expanded the menu of regions for which
conformal mapping is practical. Over the last 20 years, a few general-purpose
software packages have been created for numerical conformal mapping.
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A notable example is SCPACK [Trefethen 1980; 1989], a Fortran package
developed by L. N. Trefethen in the late 1970s. This package implements
the Schwarz-Christoffel transformation to map between the unit disk and
the interior of a polygon. Its reliability, modularity, and convenient avail-
ability have led to its use in several applications [McGrattan et al. 1994;
Najm and Ghoniem 1991; Starke and Varga 1993].

Here we introduce a new Schwarz-Christoffel Toolbox for MATLAB.' Like
SCPACK, this toolbox can solve the parameter problem and compute forward
and inverse maps for the Schwarz-Christoffel disk transformation. In addition,
the package can use a half-plane, strip, or rectangle rather than the disk as
the fundamental domain, or map between the disk and the exterior of a
polygon. In keeping with the intuitive and interactive spirit of MATLAB, the
Schwarz-Christoffel Toolbox lets the user draw polygons with a mouse, visual-
ize maps quickly, and access its functions through a graphical user interface.

This article is organized as follows. Section 2 introduces the Schwarz-
Christoffel transformation and explains the necessity of a numerical imple-
mentation. In Section 3 we summarize the algorithmic approach taken in the
Schwarz-Christoffel Toolbox, and in Section 4 we cover some of the MATLAB
implementation details. Section 5 presents several examples, and Section 6
demonstrates a few ways to extend and apply the toolbox. We make concluding
remarks in Section 7.

2. THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Suppose a polygon P has complex vertices wq, ..., w,, given in counter-
clockwise order. Some of the vertices may be infinite. To each vertex w;,
corresponds an exterior turning angle —f,w, or equivalently, an interior
angle (1 — B,)m. If w;,, # =, then —1 < B, = 1; otherwise, —3 < 8, = —1. See
Figure 1 for an illustration. Note that

> Br=—2. (1)

Let C* denote the open complex upper half-plane, and define f on C* by

n—1
flz) =a+ CJ [1(s = x)% ds, (2)
0 k=1
for some real x4, ..., x,_; satisfying
X< X<+ <Xy <x,= (3)

and complex constants @ and c¢. Equation (2) is known as the Schwarz-
Christoffel formula, in honor of the two German mathematicians who

IMATLAB is a registered trademark of The MathWorks, Inc.
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Fig. 1. Unbounded polygon with n = 6.

discovered it independently in the 1860s. It is not hard to see that f is
analytic in C " \{x, ..., x,,_;} and can be extended continuously to C* at
each x, for which B, > —1.

The form of (2) guarantees that the image of the real line under f consists
of straight-line segments that meet with exterior angle — g, at each f(x;),
1 = k = n. Because of this we say that x, is a prevertex. We would like
f(x,) = w,, so that f maps the real line to P. But although the turning
angle at f(x,) matches that at w, in P, for a general set of prevertices the
side lengths will be wrong, as in Figure 2. Clearly we cannot choose the
prevertices and constants a and c—known collectively as the accessory
parameters—arbitrarily. However, the Riemann mapping theorem guaran-
tees that there is some conformal map from C* to D, the interior of P, and
the fundamental theorem of Schwarz-Christoffel mapping guarantees that
an appropriate choice of the accessory parameters will yield such a map:

THEOREM 2.1. Let D be a simply connected region bounded by a polygon
having (possibly infinite) vertices wq, ..., w, and exterior turning angles
—Bym, ..., —B,m. Then every function which maps C* conformally onto D
can be expressed in the form (2).

ProOOF. See, for example, Henrici [1974, Thm 5.12¢]. [

Additionally, any map as in Theorem 2.1 can be extended continuously to
C™ (except at preimages of infinity) as a map onto D. By considering
Mobius transformations, we see that any three prevertices can be chosen
arbitrarily. Since x,, = %, two other prevertices, say x; and x,, may be
fixed. Then the remaining prevertices, and the constants a¢ and ¢, are
determined uniquely by P.

The Schwarz-Christoffel formula is mathematically appealing, but prob-
lematic in practice. To compute the map, one must find the prevertices by
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P f(R)
Fig. 2. The effect of arbitrary prevertices; (a) given polygon; (b) the image of the real line
under (2), for arbitrarily chosen x;, ..., x;; satisfying (3). The angles match, but the side

lengths differ.

solving a system of nonlinear equations which, except in a few special
cases, is analytically intractable. This is the Schwarz-Christoffel parameter
problem. Furthermore, the integral in (2) rarely has a simple closed form.
Finally, it is usually impossible to invert f explicitly. For these reasons,
calculations involving Schwarz-Christoffel maps must generally be done on
a computer.

Composing (2) with standard conformal maps leads to variations of the
Schwarz-Christoffel formula for mapping from other fundamental domains.
The simplest such modification has the unit disk as its domain. The
prevertices then lie in counterclockwise order on the unit circle, and the
resulting formula is identical except that there are n rather than n — 1
terms in the product of the integrand. Another variant is the transforma-
tion from a biinfinite strip {z : 0 = Imz = 1}, which is especially useful when
P is an infinite polygonal channel, such as might arise in a fluids problem,
for example. In this case the formula becomes [Howell and Trefethen 1990;
Sridhar and Davis 1985; Woods 1961] as follows:

n
z

T b
flz) =a + cj e"sn[sinh 5 (s — zk)} ds, (4)

0 k=1

where 6 depends on the divergence angles at the ends of the channel, and
the (complex) prevertices {z,} lie on both sides of the strip. By composing (4)
with a Jacobi elliptic function, a rectangle may be used as the fundamental
domain, which is appropriate when P is highly elongated in one direction.
In this case the aspect ratio of the rectangle, which is the conformal
modulus of the target polygon, cannot be specified in advance, but is
determined by solving an appropriately constrained parameter problem on
the strip (see Howell and Trefethen [1990] for details). Many other varia-
tions of the Schwarz-Christoffel transformation resulting from composition
with standard maps are possible.
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By modifying the usual derivation of (2) slightly, we can also find a
function which maps the unit disk onto the exterior of P [Henrici 1974]:

f(z) =a+ cfzszn(s —z,)P ds. (5)

0 k=1

The term s~ 2 reflects a choice of mapping the origin to the point at infinity.
Thus only a single prevertex may be chosen arbitrarily. Here the vertices
are specified in counterclockwise order about the exterior of P, or clockwise
about the interior, so that the sum in (1) is +2. Other generalizations of the
basic Schwarz-Christoffel idea have also been implemented.?

3. DESCRIPTION OF THE ALGORITHMS

From an algorithmic standpoint, all the variations of the Schwarz-Christ-
offel formula discussed in the preceding are similar. The major challenges
are computing integrals of the form (2), solving the parameter problem,
and, if desired, inverting (2). All these issues have been elegantly dealt
with for the case of the interior disk map in Trefethen [1980], for the
half-plane in Trefethen [1993], and for the strip and rectangle in Howell
and Trefethen [1990]. We briefly summarize the methods used in the
current package.

Clearly we must be able to compute integrals of the form (2). These are
nontrivial because the integrand is singular at the prevertices, and these
singularities are often endpoints of the integration. The method chosen is
compound Gauss-Jacobi quadrature, as described in Trefethen [1980].
Gauss-Jacobi quadrature is naturally suited to this type of endpoint
singularity, and an adaptive compound implementation deals with the
influence of singularities near the integration interval, which is important
due to the phenomenon known as “crowding” (see Section 5). Our experi-
ence confirms the observation made by Trefethen that N integration nodes
in eza\lfch subinterval are enough to ensure results that are accurate to within
1074,

We now turn to the parameter problem. Recall that for the half-plane
formula (2), n — 3 of the n prevertices {x,} must be determined. Because the
angles are guaranteed to be correct for any set of prevertices, we must use
the side lengths of P to derive n — 3 real conditions. If all the vertices w,
are finite, a natural set of conditions is as follows, according to Trefethen
[1993]:

[ f'(s)ds] _ [Wii1 — wyl

[2f(s)ds|  Jws— wy]

2<=k=n-—2. (6)

2See Dappen [1988], Davis [1979], DeLillo and Elcrat [1993], Floryan [1986], Floryan and
Zemach [1987], Hoekstra [1986], Howell [1993], and Reppe [1979].
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Note that the constants a and ¢ do not appear, and the equations are scaled
by a length occurring in the problem. If all n — 3 equations are satisfied,
then wy, ..., w,_; are correctly located relative to one another, and w, is
then located by the intersection of the two sides adjacent to it. As a
consequence, w, may not be a finite vertex whose adjacent sides are
collinear; that is, 8, must not be 0 or 1.

Equation (6) give us a square system of nonlinear equations, but it is a
constrained system due to (3). A change of variables enforces the con-
straints implicitly:

yJZIOg(xJ+2_x]+1), 15.]5” - 3. (7)

Now we have an unconstrained square system of nonlinear equations,
which can be solved numerically by a number of standard methods. The
integration contours in (6) are chosen to be the real line segments between
prevertices, so that the logarithms needed to compute the integrands can
be done in real arithmetic. This is an advantage particular to the half-plane
formulation.

If a particular vertex w, is infinite, the conditions in (6) for 2 = k — 1 and

= k cannot be used. Instead, we can integrate between prevertices k — 1
and k + 1 and replace the absolute values of the fractions with real and
imaginary parts. However, in order to avoid integrating through a singu-
larity, the integration path between x,_; and x,,; must pass through the
upper half-plane (we choose two line segments meeting at an intermediate
point), and the advantage of real logarithms is lost. Note that w, and w,
must be finite because of their appearance in the denominators of (6). In
order to avoid integrations with an endpoint at infinity, we must also
require the finiteness of w,_;. Occasionally these restrictions necessitate
renumbering the vertices or, in rare cases, adding trivial (zero-turn)
vertices.

Systems analogous to (6) are solved for the disk, strip, and rectangle
variations. For the disk, our approach differs slightly from that taken in
SCPACK, where only one prevertex plus the conformal center (image of the
origin) are fixed and where n — 1 conditions are needed. When the
fundamental domain is the strip or the rectangle, logarithms are taken in
the analog of (6) in order to improve scaling, because the polygons involved
are usually highly elongated; for details, see Howell and Trefethen [1990].
For the exterior mapping problem, in which n — 1 conditions are required,
the first n — 3 conditions are of the form (6), and the remaining two real
conditions come from setting the scaled residue of /' at the origin to zero.

Finally, there is the matter of calculating f (w). Again, we take the
approach of SCPACK. By differentiating w = f(z), we obtain an ODE for z
with w as an independent variable. Alternatively, we can apply Newton’s
method to find a root of f(z) — w. Often the most efficient method is to
numerically solve the ODE with a large error tolerance in order to obtain a
good initial guess for the Newton iteration.
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4. MATLAB IMPLEMENTATION

Programs for working with half-plane, disk, strip, rectangle, and exterior
maps have been written for MATLAB 4.1 in its native language. Routines
are included for solving the parameter problem and computing forward and
inverse maps for each variation. There are also functions for altering a disk
map to accommodate an arbitrary choice of conformal center (thus all the
functionality of SCPACK is included) and for converting between half-plane
and disk variations.

The public domain MATLAB package NESOLVE,®> which is Richard
Behrens’ implementation of some of the modules in Dennis and Schnabel
[1983], was chosen for solving the nonlinear system arising from the
parameter problem. The algorithm used is a Gauss-Newton method with
line search and Broyden update of the Jacobian. The FSOLVE package
currently available in MathWorks’ Optimization Toolbox computes the
Jacobian by finite differences only; the Broyden update is significantly
better because of the relatively high cost of nonlinear function evaluations.
Iterations are continued until the two-norm of the nonlinear function vector
(e.g., Eq. (6)) is smaller than a user-adjustable tolerance. Experience
indicates that the values of prevertices and function maps are then gener-
ally at least as accurate as this tolerance, and often the maps are more
accurate far from the singularities.

Experiments reveal that MATLAB automatically exploits the advantage
of real logarithms available in solving the half-plane parameter problem.
For this reason, the half-plane formulation in general executes about twice
as fast as the disk formulation, although on some problems it is actually a
little slower. All the toolbox code is vectorized to avoid unnecessary loops, a
crucial factor affecting execution time in MATLAB. A few other measures
have been taken to improve speed somewhat, but the code has not been
finely tuned. Comparisons with the Fortran SCPACK indicate that the
latter is usually faster at solving the parameter problem than the toolbox
disk and half-plane parameter problem solvers, even though the latter have
two fewer unknowns in the nonlinear system. Typically, the ratio of
execution time for the toolbox to that of SCPACK is roughly two, although
it varies between 0.8 and 5. The discrepancy between MATLAB and
Fortran is probably unavoidable, being in part due to MATLAB’s dynamic
management of memory and program flow control. Fortunately, modern
computing power and the usually modest problem sizes make the speed
issue fairly minor in absolute terms.

Emphasis was placed on making the toolbox easy and convenient to use.
The innate interactivity, vector handling, and graphics capabilities of
MATLAB naturally play an important role. In addition, functions have
been provided to facilitate use of the numerical core. One function allows
the user to input a polygon with a mouse. It supports infinite vertices,

3This is the same package that was distributed as FSOLVE in versions of MATLAB prior to
4.0.
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restriction to a grid, and quantized angles and side lengths. This function
has proved invaluable in exploring maps for many different regions. Also
useful are adaptive plotting routines, which provide an easy way to
visualize the maps by graphing the image of a customizable orthogonal
mesh in the fundamental domain. Finally, virtually all the major toolbox
functions are accessible both via the command line and through a graphical
user interface (GUI) constructed using MATLAB’s built-in facilities. The
command-line route allows precise control and incorporation of the package
into other software. The GUI is well suited for experimentation.

The toolbox, along with documentation, is available via anonymous ftp:
ftp.cs.cornell.edu, in the directory pub/driscoll/SC-Toolbox. Inquiries may
be sent to the author at driscoll@na-net.ornl.gov.

5. EXAMPLES

We now present a few examples to illustrate the capabilities of the
Schwarz-Christoffel Toolbox. The toolbox is also distributed with several
automated demonstrations accessible through the function scdemo. Com-
plete details on using the package are given in a user’s guide distributed
with the software and in online help via MATLAB’s help and lookfor
commands.

All the polygons for the following figures were drawn by hand with the
toolbox’s drawing function, drawpoly. This function allows the user to
constrain vertices to a grid, quantize polygon angles and lengths, and place
infinite vertices.

Figure 3 shows the half-plane and interior disk maps for an L-shaped
region. Figure 3(a) is the image of a regular rectangular mesh in the upper
half-plane. The images of the vertical lines converge at one end to
w,, = f(), and the horizontal ones converge there at both ends. Figure 3(b)
is the image of a polar grid in the unit disk. Of course, all the intersections
in both graphs are at right angles. Underneath each plot is a listing of lines
that are entered at the MATLAB prompt or in a function file to create each
picture. The listings have one line each for creating the polygon via the
drawing tool, solving the parameter problem, and visualizing the result.
The slightly different plotting command for the disk case stems from
requiring the conformal center to be at —0.5 — 0.5i. Each of the plots in this
section is produced similarly, with possibly an extra line for manually
selecting the axes limits. For the half-plane case, the parameter problem
solution took 1.1 seconds and the plot about 15 seconds on a SPARC-10
workstation. The corresponding times for the disk were about 2.8 and 9.4
seconds. The parameter problem times correspond to the number of nonlin-
ear function evaluations needed: 12 for the half-plane and 30 for the disk.
(This example is too simple for the advantage of real logarithms to be
evident.) The plotting time for the half-plane is longer because the program
must figure out how far toward infinity it must go in three directions to
produce accurate and smooth curves near w,,.
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-2 -1 0 1 2

>> [w,b] = drawpoly; >> [w,b] = drawpoly;
>> [z,c] = hpparam(w,b); >> [z,c] = dparam(w,b);
>> hpplot(w,b,z,c,10,0.8:.8:8) >> ptsource(w,b,z,c,-.5-.5i)

(@) (b)
Fig. 3. The half-plane (a) and disk (b) maps for an L-shaped region. The half-plane plot is the
image of 10 evenly spaced vertical and 10 evenly spaced horizontal lines with abscissae from
—2.7 and 15.6 (chosen automatically) and ordinates from 0.8 to 8. The disk plot is the image of
10 evenly spaced circles and radii in the unit disk. Below each plot is the MATLAB code
needed to generate it.

Figure 4 demonstrates the half-plane and disk maps for several polygons
featuring infinite vertices and slits. Half-plane maps are often suggestive of
potential flows of fluids, while disk maps typically invite interpretation as
electrostatic fields due to point charges.

Figure 5 shows the disk maps for two regions which have recently
achieved some notoriety due to Gordon et al. [1992]. In their paper the
authors answer the celebrated question, “Can one hear the shape of a
drum?,” in the negative, and these regions represent their simplest coun-
terexample. That is, the Laplacian operators with homogeneous Dirichlet
boundary conditions on these regions have identical spectra. The polygons
bounding the regions have the same turning angles in different orders,
which leads us to speculate that the Schwarz-Christoffel maps might lend
some insight into the isospectral property.

Figure 6 shows a polygon which exhibits the crowding phenomenon, a
well-known difficulty encountered in numerical conformal mapping. In
Table I we see that the prevertices for both the half-plane and disk
formulations are highly clustered. In general, the prevertices of an elon-
gated region become crowded together in a way depending exponentially on
the aspect ratio of the region. Hence it becomes impossible to distinguish
prevertices in double-precision arithmetic for an aspect ratio greater than
about 20. In practice even a slightly smaller aspect ratio can make
convergence to the solution of the parameter problem unacceptably slow.
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-1 -05 0 0.5 1 -2 -1 0] 1

Fig. 4. The half-plane (top) and disk maps (bottom) for several polygons. Except at top right,
the regions are unbounded.

Crowding can be circumvented for regions which are elongated in just one
direction by using a rectangle as the fundamental domain.

Figure 7 exhibits the rectangle maps for two polygons for which neither
the half-plane nor disk maps can be computed by the toolbox. The rectangle
map can be used to compute the electrical resistance of a polygonal resistor
[Trefethen 1984], because the resistance is equal to the conformal modulus
of the polygon.

Closely related to the rectangle map is the map from a biinfinite strip.
Typically this formulation is useful when the target region is a polygonal
channel, and the ends of the strip correspond to ends of the channel.
Another interesting situation is when a source or sink is desired at some
finite vertex of a polygon. Figure 8 demonstrates these situations.

Figure 9 displays the exterior maps for two polygons. From the toolbox
user’s standpoint, there is little difference from the other maps. A natural
interpretation of the plots is as equipotential and field flow curves for
polygonal conductors. The region on the left is an early stage in the
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-2 0 2 -2 0 2
Fig. 5. “Can one hear the shape of a drum?” Disk maps for regions which are isospectral with
respect to the Laplacian operator with Dirichlet boundary conditions. Each plot shows the
images of 12 circles with evenly spaced radii between 0.1 and 0.99 and 12 evenly spaced rays
in the unit disk.

-2 0 2
(@)

Fig. 6. (a) a polygon which exhibits crowding of the prevertices (see Table I); (b) the disk map
for the region inside the dashed lines.

production of the fractal Koch snowflake and appears in the CONFPACK
documentation [Hough 1990]. This polygon was drawn quite easily by hand
using angle and length quantization. Because of the manifold symmetry of
the region, the exterior map could be computed by solving an interior
mapping problem for a sector of angle 7/6 of the snowflake exterior and
applying the Schwarz reflection principle. This would reduce the effective
number of vertices from 48 to 6, and in principle it would speed up the
solution to the parameter problem by a factor of thousands. However, using
the exterior formula (5) for the full polygon, the parameter problem
solution and the plot in Figure 9 each required about four minutes on a
SPARC-10, so the potential gains are not large in an absolute sense.
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Table I. Prevertices for Half-Plane and Disk Maps of the Polygon in Figure 6

k wy, Half-plane: x, Disk: (arg z,)/m
1 3.2 + 2.4 -1 0.00800451739
2 0.8 — 0.4i 0 0.606337224

3 -0.8 — 0.4i 0.0217140432 1.49999746

4 -2.8 +2i 0.0217140885 1.49999860

5 -2.8 - 2i 0.0217140902 1.49999865

6 -0.8 —0.8¢ 0.0217141442 1.5

7 0.8 — 0.8; 0.0396571622 1.75

8 3.2 -2 © 2

For the half-plane, prevertices 1, 2, and 8 are fixed, while for the disk, prevertices 6, 7, and 8
are fixed. Note that many of the prevertices are quite close together, a manifestation of the
crowding phenomenon.

3 of =

2 - i 1
2 ——
1 1
ol 0
-1t -1
-2 T T
-2 1 1
-3 —

-2 0 2 -2 0
(@) (b)

Fig. 7. The rectangle map for two highly elongated regions. The curves are images of equally

spaced lines in the interior of the rectangles. The conformal moduli of the regions are about

27.2 (a) and 91.5 (b), rendering them impossible to map from the disk or half-plane in
double-precision arithmetic.

___,

SERS

N

Moreover, the exterior formula also applies to regions with no symmetry, as
the graph on the right in Figure 9 demonstrates.

6. EXTENSIONS AND APPLICATIONS

In this section we demonstrate a few ways to extend the conformal mapping
utility of the Schwarz-Christoffel Toolbox, and we present two simple
applications of the exterior map.

The Schwarz reflection principle was mentioned in Section 5 as a means
of speeding up computations for regions with reflective symmetry. The
reflection technique can also be used to compute conformal maps for
regions to which the Schwarz-Christoffel formula does not directly apply.
Two examples of this are exhibited in Figure 10. For periodic regions such
as the one on the left (Figure 10(a)), the overall map can be constructed by

ACM Transactions on Mathematical Software, Vol. 22, No. 2, June 1996.



180 . Tobin A. Driscoll

5 0 5 2 0o 2 4
(@) (b)

Fig. 8. Maps from the infinite strip 0=Im z=1; (a) the ends of the strip map to the ends of the
channel (compare to Figure 4); (b) one end of the strip maps to a finite point.

4

-4 >
4 -2 0 2 4

Fig. 9. Maps from the unit disk to two polygon exteriors. The region on the right is the
complement of three connected line segments.

computing the rectangle map for the fundamental region (shown in dashed
lines) and reflecting and translating the results [Floryan 1986]. Since the
toolbox’s plotting routines return the coordinates of the plotted points upon
request, this graph can be constructed with one plot statement per funda-
mental unit. Another interesting way to use reflection is for doubly con-
nected regions with an axis of symmetry, as shown in Figure 10(b). Because
the entire region maps to an annulus, half of the region maps to half an
annulus, which after a logarithm becomes a rectangle. Thus Figure 10 is
the result of a toolbox rectangle map and a reflection.

A different method can be used to find maps to gearlike domains [Pearce
1991], such as the one shown in Figure 11(a). The simplest case is when
one of the notches goes to the origin. Upon taking a logarithm, the region
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-10 -5 0 5 10 -2 0 2

(@) (b)
Fig. 10. Maps computed by reflections: (a) periodic with reflective symmetry at the dashed
lines and mapped from a strip; (b) doubly connected with an axis of symmetry and mapped
from an annulus.

2n

3n/2

n/2

-1 05 0 05 A -4 -2 0
() (b)

Fig. 11. (a) Map from the unit disk to a gearlike domain; (b) logarithms of these curves.

becomes a notched semiinfinite strip (Figure 11(b)), for which an interior
map can be computed.

Figure 12 shows a simple application of exterior mapping: streamlines for
two flows past a crude “airfoil.” The method is outlined in Henrici [1974,
pp. 3568-367]. The situation in Figure 12(a) is flow with zero circulation, for
which one stagnation point is on top of the airfoil. This plot is made by
considering the model problem of flow exterior to the real interval [—1, 1].
The streamlines of the model problem are horizontal lines and can be
mapped to the unit disk by an inverse Joukowski map and thence to the
airfoil exterior via the toolbox. Figure 12(b) is a flow with negative
circulation meant to illustrate the Kutta condition. In this case the model
flow is the exterior of the unit circle, which was the intermediate plane in
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-2 \
N
-4

-4 -2 0 2 4 -4 -2 0 2 4
(@) (b)

Fig. 12. (a) noncirculating potential flow past an “airfoil”; (b) flow past the same airfoil with
negative circulation.

the previous case. The stagnation points in the model plane are prevertices
of the airfoil, and from this the streamlines can be computed in the model
plane (via MATLAB’s contour command) and mapped to the airfoil exterior.
One potential pitfall of applying this technique to real airfoils would be the
introduction of singularities in the flow at artificial corners. However, we
expect that with careful use, polygonal approximation often produces
acceptable results.

A completely different application of the exterior map is the computation
of Faber polynomials. Let () be a bounded, connected region whose comple-
ment Q° is simply connected in the extended plane. There is a unique
conformal map ¢ which takes Q¢ onto the exterior of the unit disk, fixes the
point at infinity, and has a positive real derivative there. The mth-degree
Faber polynomial F,, for () is given by the polynomial part of the Laurent
expansion of ¢ at infinity. When () is the interior of a bounded polygon, so
that the f defined in (5) maps from the unit disk to (°, the Faber
polynomials can be computed easily from f via a recurrence relation.

The Faber polynomials have a number of interesting properties, one of
the most important being that they are “nearly minimax” on the region ().
This property has been used as a justification for choosing Faber polynomi-
als for approximate spectra as iteration polynomials in Krylov subspace
iterations for the solution of linear systems [Starke and Varga 1993]. In
Figure 13 we plot the lemniscates {z : |F,,(z)] = 1} for a particular polygon
and various m. Because F,, is an analytic projection of ¢™, which is
identically one in modulus on the polygon, the lemniscates approximate the
polygon. The reentrant corners of the exterior region are resolved first,
with the “deadwater” regions being most difficult. Note the tendency of the
lemniscates to oscillate about the polygon edges. This is related to equi-
oscillation, familiar from Chebyshev approximation, and the near minimal-
ity of the Faber polynomials. Figure 14 presents another look at this

ACM Transactions on Mathematical Software, Vol. 22, No. 2, June 1996.



A MATLAB Toolbox . 183

m=4 m =38
3 3
A
2} . 2
1 N 1
/
0 0
-1 , -1
) 2 -2
T
-3 -3
2 0 2 -2 0 2
m=12 m =16
3 3
2 2
1 1
0 0 7
-1 -1
2 -2
-3 -3
-2 0 2 -2 0 2
Fig. 13. Lemniscates of Faber polynomials. The solid curves are the level sets {z: |F,, (z)| = 1}

for Faber polynomials of degrees m = 4, 8, 12, 16 for the dashed polygon. The level sets
approximate the polygon better as m increases.

phenomenon, showing the absolute value of the same F,, on Fejér points
(images of roots of unity) on the polygon.

7. CONCLUSION

The Schwarz-Christoffel Toolbox for MATLAB represents two principal
improvements over the Fortran package SCPACK. First, it supports many
more variations of the Schwarz-Christoffel transformation, including maps
from the half-plane, strip, and rectangle, and maps to polygon exteriors. In
particular, it offers the rectangle as an alternative for some polygons for
which crowding would be prohibitive on the disk. Second, it comes with
graphical input and output facilities, a graphical user interface, and is part
of the interactive MATLAB environment. These improvements enhance the
usefulness of the package for experimentation with the different sorts of
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Fig. 14. Size of the Faber polynomials on the polygon. The polynomials from Figure 13 are
evaluated on 200 Fejér points on the polygon and their absolute value plotted. The values
oscillate about 1.

Schwarz-Christoffel maps for a large variety of polygons. At the same time,
MATLAB’s computational engine services allow the package to be inte-
grated into other functions written in MATLAB, Fortran, or C. Although
some execution speed from SCPACK is sacrificed, we believe the difference
to be unimportant for most applications. If speed were essential, the most
significant numerical routines could be translated into Fortran or C and
linked seamlessly with MATLAB.

Many possibilities exist for future work. Other generalizations of the
Schwarz-Christoffel transformation could be integrated into the package,
such as doubly connected regions [Ddppen 1988], gearlike domains [Pearce
1991], circular arc polygons [Howell 1993], multiply elongated polygons
[Howell 1994], and general piecewise smooth boundaries [Davis 1979].
Another possibility is to implement some other conformal mapping formula,
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such as Symm’s method for regions with piecewise analytic boundaries
[Hough 1990].

By virtue of the growing acceptance of MATLAB as a numerical labora-
tory, we hope that the Schwarz-Christoffel Toolbox may serve to increase
awareness that the Schwarz-Christoffel transformation is a practical real-
ity.
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