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Infinite product formulae for conformally mapping an unbounded multiply connected
circle domain to an unbounded canonical radial or circular slit domain, or to domains
with both radial and circular slit boundary components are derived and implemented
numerically and graphically. The formulae are generated by analytic continuation with
the reflection principle. Convergence of the infinite products is proved for domains with
sufficiently well-separated boundary components. Some recent progress in the numerical
implementation of infinite product mapping formulae is presented.
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1. Introduction

We develop formulae for conformal maps f:Q—P from unbounded multiply
connected circle domains to canonical unbounded slit domains. A circle domain
Q is a domain of connectivity m in the extended complex plane C* that
contains the point at infinity, and whose m boundary components are circles, Cj,
j=1, ..., m. A radial or circular slit domain P is a domain in C*, o €P with
boundary consisting of m closed segments lying on rays from the origin or m
closed circular arcs lying on circles centred at the origin, respectively. Circle,
radial slit and circular slit domains are three of the classes of canonical domains
in Koebe’s classification of multiply connected domains. There are various
functional relationships between pairs of slit mappings from different canonical
classes (Nehari 1952, Chap. 7), but the circle domains are not related to other
canonical classes in such an elementary fashion. Thus, it is of great interest to be
able to find explicit formulae for mapping the circle domains onto the radial and
the circular slit domains.

We derive our mapping formulae by using the reflection principle to extend the
mapping f beyond Q to a globally defined function. Then, complete knowledge of
the zeros and poles of the globally defined function enables one to express f as an
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1720 T. K. DeLillo et al.

infinite product. This is a more direct determination of f than the analogous
process in finding the Schwarz—Christoffel mapping formula for general polygonal
domains where the reflection process leads to a determination of the derivative of
the mapping function (DeLillo et al. 2004). The remaining problem of trying to
determine f from an integral of many non-elementary infinite products with
unknown accessory parameters is still not solved in a satisfactory general manner
(DeLillo et al. 2006). Thus, it is quite interesting to see in the present work that
for radial and circular slit mappings, the problem of integrating the derivative of
the desired mapping function is eliminated. Schwarz—Christoffel formulae for
bounded polygonal domains were derived by Crowdy (2005) and for unbounded
polygonal domains by Crowdy (2007) using Schottky—Klein prime functions (see
also DeLillo 2006).

The techniques in this paper differ from those employed by Crowdy &
Marshall (2006). They follow the approach of Schiffer (1950) giving the radial
and circular slit maps in terms of Green’s functions by using Schottky—Klein
prime functions of the circular domains. By contrast, we use directly the
properties that such mappings must have and basic reflection arguments to
derive our formulae without recourse to Green’s functions. There is a close
connection between reflections in circles and the Schottky group, which DeLillo
(2006) uses to derive relations between the Schottky-Klein prime functions and
(bounded and circular) slit maps in the context of Schwarz—Christoffel mapping.

Green’s functions for multiply connected domains are useful in many
applications. Crowdy & Marshall (2007) have given Green’s functions for circle
domains in terms of Schottky—Klein prime functions. Our methods can also be
used to give explicit formulae for Green’s functions for circle domains. As given
by Nehari (1952), the radial and circular slit maps are central components in the
construction of Green’s functions of a given domain. In a similar fashion, the
combined circular /radial slit map given below can be used for the construction of
the Robin function, the Green’s function for the mixed boundary-value problem.
With our approach, the maps to (bounded) circular and radial slit discs and
annuli are also needed. However, these maps are closely related to the maps
given below. The circular slit disc map is already given by DeLillo (2006). Details
will appear in a forthcoming article.

The paper is organized as follows. In §2, we give some preliminaries on
reflection in circles. In §3, we give simple derivations of infinite product formulae
for maps w= f(z) from circle domains to canonical radial, circular and combined
radial/circular slit domains. We prove convergence of the formulae for domains
satisfying a separation condition. The evaluation of the (truncated) product
formula based on successive reflections is very inefficient. Therefore, in §4, we
give an efficient method for calculating the slit maps based on solving a least-
squares problem, as given by Trefethen (2005; see also Finn et al. 2003).

2. Preliminaries
We shall introduce notation, recall basic facts about reflections in circles and relate
useful information. As already mentioned, w=f(z) is a conformal map f:Q—P
from a circle domain to a slit domain of connectivity m, with c;and r; denoting the

centres and radii, respectively, of the mutually exterior boundary circles Cj.
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Radial and circular slit maps 1721

Figure 1. N=1 levels of reflected circles and centres for unbounded case.

The refiection of z through a circle C' with centre ¢ and radius r is given by

2

P
* = pp— + y 21
Z=po(z)=c F— ¢ (2.1)

i.e. zand 2° are symmetric points with respect to the circle C. If C= C,, where 7 is
an index of a circle, we will denote p by p;. In our work, the function fthat maps
Q on to a canonical slit domain is known to exist by classical uniformization results
of Koebe, but no formula is provided by the non-constructive proofs. We develop
our mapping formulae by using analytic continuation with the reflection principle
to extend fonto C*\{lim. pts.}. Briefly, we begin by continuing f beyond Q with
reflection across its m boundary circles, C; We repeat this process, reflecting
across the m(m—1) reflections of the original m boundary circles thereby
producing m(m—1)* additional reflected circles. Unlimited iteration of this process
produces a global extension, f, of f. The values of the extension are obtained at
each reflection by reflecting the values of the already defined function across the
appropriate boundary slit. Then it can be seen that the global f is characterized by
its zeros and poles and that the formula for fin terms of infinite products of these
zeros and poles follows. It is useful to note that the number of new regions and new
boundary components created by the reflections at a given level is m—1 times that
at the preceding level.

We need the notation of multi-indices to denote reflected domains and boundary
circles. When @ is reflected through the boundary circle C}, it produces a domain
Qy:=p;(Q) inside C] that is bounded by C} and the reflections of Cs, ..., C,,, which
we denote Cio,Cy3, ..., Cip, respectively, i.e. Cy;=pi(Cj). Similarly, Q,= py(Q) and
Cri=pi(C)), j# k. Figure 1 illustrates reflections of circles and centres for m=3 for
one level (N=1, below). In general, for a multi-index, v=vv, --- v,, and a quantity
@ (point, circle or region),

Qv = p,(Q) = py, 0,0, (Q) = Py, (s, (- (0, (Q))--)). (2.2)

Proc. R. Soc. A (2008)



1722 T. K. DeLillo et al.

Figure 2. Maps from unbounded circle domains to radial and circular slit domains with a Cartesian
grid. The products are truncated to N=4 levels of reflection. With N=3 the slits appear to be
slightly open as in figure 3.

Definition 2.1. The set of multi-indices of length n will be denoted
o, ={nvy.v,: 1<y, <m,v,#Fvq,k=1,...,n—1}, n>0, (2.3)

and gp=¢ (in which case vi=1 for v€ g, below). Also
g,(i) ={v €0, :v, #i}, (2.4)
denotes the set of sequences in ¢, whose last factor never equals 1.

From propostion 1 of DeLillo et al. (2004), we also have that if v€o,, n>1,
then Q,=p, (Q,,l_”,,nfl) is a circular domain with outer boundary C, and m—1
interior boundary circles. Clearly, o, contains m(m—1)""" elements, which is
consistent with our earlier comment that the number of circular domains Q, at a
particular level of reflections, say v€o,, is m—1 times the number of domains
Q;, v € 0,_, at the preceding level.

In order to state our convergence results, we need the following definition and
lemma. The separation parameter of the region is

rity o
d=max———<1, 1<i, j<m, (2.5)
iwii# | e — ¢
for the assembly of m mutually exterior circles that form the boundary of Q
(cf. Henrici 1986, p. 501). Let C; denote the circle with centre c; and radius r;/4.
Then geometrically, 1/4 is the smallest magnification of the m radii such that
at least two C}’s just touch. We will use the following inequality from Henrici

(1986; p. 505):

Lemma 2.2.
m

> orp<atty el (2.6)

VEDT, 4 1=0

3. Maps to the canonical radial and circular slit domains

In this section, we use simple reflection arguments to derive the mappings of
unbounded circle domains to the canonical radial and circular slit domains as
well as mapping to a domain with both radial and circular slit boundary
components (figures 2 and 3).
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Figure 3. Map to circular/radial slit domain with N=3 levels of reflection.

(a) Radial slit maps

We will give a detailed derivation and proof of the formula for a conformal
mapping f of an m-connected circle domain Q onto a radial slit domain P with
f(a)=0 and f(o)= . We begin with a brief outline of the procedure. First, we
extend fto a globally defined (many valued) f on C*\{lim. pts.} by repeated use
of the reflection principle. When f or f is reflected across a circle C, the
corresponding extension of w= f(z) across the radial slit y=f(C) at angle 6 is
given by reflecting w across v to w*=e?w. The latter reflection leaves the
w-values zero and infinity fixed and hence the zero set of the extended f will be
the point a and all of its reflections, and similarly for o« and the other the poles of
f Thus it seems plausible to think that the mapping f:Q2 — P can be expressed by

a formula
m

pl/ a’k
(z—a kll H = () (3.1)
VEO’ (k)
where the a;’s are the reflections of a across the boundary circles Cj, and ¢;’s
are the reflections of o across the boundary circles of Q. Further details
including convergence will be proven when the m circles with centres c¢;, satisfy
our separation condition in theorem 3.2. Note that f(a)=0 and f(z)/z= O(1)
near .

It is important to note that, although the global f is many valued, the diffe-
rential expression f /(z) /f (2) is single valued. Indeed, any two values, f,(z) and
f s(2) of f at a point z € C*\{lim. pts.} are related by the composition of an even
number of reflections in lines and hence f (z)= Af,(z) for some A€C. The
differential expression, f'(z)/f(z), is invariant under maps w+— Aw, i.e.
(af(2))'/(af(2))=f'(2)/f(2). Thus, if one begins with f'(z)/f(z) in Q, the
reflection process yielding the many-valued f also defines a global analytic
function, f/(z)/f (2), that is defined and single valued on C*\{lim. pts.}. We shall
refer to S(z) = f'(2)/f(z) as the singularity function. Our proof will depend on

showing that
m 1
S(z + — 3.2
=L E (= )T

z— pv(ck)

VEU (k)

Proc. R. Soc. A (2008)



1724 T. K. DeLillo et al.

or in convergent form,

_ 1 N po(a) — py(cr)
LA PPy (hiemam) 69
vEa; k)

Our task is to show that, indeed, f'(2)/f(z) = S(z). Note that

f) 1, FQ] and  S(z) ==+ [i?} (3.4)

z z V4

f(z) 2
We will show that the sums truncated to N levels of reflection,
1 n g 1 1
g - — 3.5
= S (= s

k=1 =0 z pv(a‘k) Z— pv(ck)

vEa;(k)

converge uniformly to S(z) for z € Q as N— o, provided the circles satisfy our
separatlon condition, that S(z) satisfies an appropriate boundary condition, and
that f(z) = exp(] S(z) dz), our main theorem.

Our boundary condltlons are given by

Lemma 3.1. Re{(z— ¢;)f'(2)/f(2)} =0,z € C,.

Proof. For z € Cy, we have z= ¢, + 7, and since f(z) maps to radial slits, we
have arg f(z) =const. Therefore,

J J i ol io [’ i
0 =3 arg f(z) = @Imlogf(ck + 1) =Im1rke07 = Re rke07(ck + re?).
(3.6)
|

We now state our main theorem for radial slit maps.

Theorem 3.2. Let P be an unbounded m-connected radial slit region, 0,0 € P,
and Q a conformally equivalent circular domain, a,© € Q. Furthermore, suppose

Q satisfies the separation property 4 < (m — 1)_1/4 for m>1. Then Q is mapped
conformally onto P by f with f(a)=0 and f( )= o0 if and only if

flz) = z—aH H Z_"” ) (3.7)

pV Ck
1/€c7 (k)
for some constant C. [ |
Proof. The proof, that a map fto a radial slit domain must necessarily be of
the form (3.7), follows very closely the proof of theorem 1 by DeLillo et al. (2004).
The central idea is to prove that f'(z)/f(z) = S(z) by means of the argument
principle. We shall use the following two results whose proofs are given after the

present proof in order to keep the essence of the present proof from being
obscured by calculation details.

(i) Convergence: S(z)=limy_, Sy(2) uniformly on Q.
(ii) Boundary conditions: Re {(z = s;)5(2)}.,e, = 0,7=1,.

Proc. R. Soc. A (2008)
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For z € Q, we define the functions

N m 2
Hy(z) = | Sy(§) d¢ :ZZ Z J g—la — g—ls - dg, (3.9)

is defined and analytic in Q since its periods are zero. Indeed jCT +Sy(2)dz=0,
7=1,..., m, where C.+ is a circle concentric with the boundary circle C; with radius
slightly larger than that of C, since the residues add out in pairs. Furthermore, H(2)
is analytic in Q since

H(:) = lim Hy(2) = Jim | $0(0) dt = J S@dt €@ (3.10)

with Sy(z) = S(z) uniformly on closed subsets of Q.
The next step is to develop a formula for the antiderivative (up to an
additive constant)

e =[s@a- [ ¥ (-t )a

1

N 2 y;
Z log( =—2), (3.11)
Z— 8;

where each logarithm is the branch that vanishes at z= o, i.e. logl=0. From
the preceding formula, one has

N o
P(2) = lim exp {Hy(2)} = lim <Z> (3.12)

N 2 Sy
J=0
vEa;(i)

and hence the product formula for P(2),

P(z) = ") =] f[ <%> (3.13)

Our theorem, f(z) = A [* P({) d{ + B, is equivalent to showing that the quotient

Q(z) = /(2) = const. (3.14)

Proc. R. Soc. A (2008)
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To accomplish this, we will apply the argument principle to Q(z). First, observe
that P'(z)= H'(z)e H(2) = S(2)P(2), i.e. P'(2)/P(z)= S(z), and

(PN _ (1
?=5(57%) ~o79) 1

Then, for z=¢; + rjew € (j, the boundary conditions of lemma 3.1 and theorem
3.4 on f'/f and S, respectively, give

a ; Q)
7 T Q(z) = T Im {log Q(z ?(}) {( <) Q(Z)}

refemo(f-so)l -0

By our construction of S(z), f'(2)/f(z) — S(z) is continuous on all C;. Therefore, arg
( is constant on each of the m boundary circles, C;. Equivalently, Q( C)), the image
of €}, lies on a half-ray emanating from the origin. It is clear by the local behaviour
of f and formula (3.13) that @= f/ P is continuous on each C] and not equal to 0 or «
there, since f, P#0. Thus, for any w, € C\Q(C;), j=1,...,m, the winding
number of Q(C;) around wy, n(Q(C;), wy) =0 for all J. Let C’R be a large circle of
radius R centred at the origin and containing wy and all the C}s in its interior, and
write C'= C} U---U C,, U Cp with the curves oriented so that the region interior to
Cr and exterior to the C}’s is on the left. Since @ has no poles in the region, by the
argument principle (for bounded regions), the number of times ()(z) assumes the
value wy is

n(Q(C),wy) = n(Q(Cr),wy) + -+ +1(Q(Cr), wy) + n(Q(Cp), wy) = n(Q(C), wp)-

(3.17)
We now will show that n(Q(Cy), wy) = 0. First,
_ 1 Q=) -1 Q2)/Q() .
n(Q(C), wn) = 2mi J =R Q(2) — wy d 27m'Jz —r1—wy/Q(z) dz. (3.18)

Recall that Q'()/Q(2) = £'(2)/f() —8(2) = (1/2) + [1/2*] = (1/2) + [1/*] = O
(1/2?) for z near o, and that, Q(%)= f(%)/P() is a finite constant. It suffices
to assume wy # Q(°). Then wy # Q(z) for R sufficiently large and there are

constants A, B> 0 such that

LN (<] g [ L
L|=R Ll e <a] 10/ < B| T Rao—0. (319
as R — o. Therefore, n(Q(C'), wy) = 0 and Q(z) # w for wy & Q(C;) and wy # Q().
Thus, @ assumes values only on the radial segments Q(C;) (or Q( )) and hence,
by the open mapping property of analytic functions, ) must be constant on Q.
Finally, we show that a function w= f(z) of the form (3.7) always determines a
conformal map to the conformally equivalent slit domain P with f(a)=0 when Q
satisfies the separation property: by the basic existence theorem for maps of multiply
connected domains, Q is conformally equivalent, via a map g with g(a) =0, to some
radial slit domain P’. By the above argument, ¢(z) must have the form (3.7), and by
uniqueness of the conformal maps we must have P’ = CP for some constant C.

In the special case when m=2, there is no restrictive separation hypothesis;
since then 4 < (m —1)"Y4=1 is equivalent to the fact that the two boundary
components are disjoint.

Proc. R. Soc. A (2008)
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(i) Convergence of S(2)

For j=0,1,2, ..., we write

Aj(z)=§:z <z_1am — > sz W (3.20)

1=1 VEO'](i) =1 I/EJ, 1 aV?)(z sl/i)

and hence, in brief notation,

N
Sy(z) = ;Aj(z), 5(z) = lim Sy(2). (3.21)
Let |
0 =09 = irelgﬂz— al,lz—s|: k=1, ...,mv Ea}. (3.22)

Then, clearly 6> 0 holds since the a,’s and the S,’s lie inside the circles.
We have the following

Theorem 3.3. For connectivity m >2, Sy(z) converges to S(z) uniformly on Q
satisfying the following estimate

15(2) = Sy(2)] = O((K*vVm = 1)), (3.23)
for regions satisfying the separation condition
1
A< —F. 3.24
Proof. Note that the number of terms in the A,(2) sum is O((m — 1)’). This
exponential increase in the number of terms is the principal difficulty in establishing
convergence. Recall that r,; is the radius of circle C,;. We bound A,(2) for z € Q by
using the facts |a,; — s,;| < 27,;, and the Cauchy-Schwarz inequality, as follows:

m

2)| < Z Z |Cbm'—8u_z"
)21

veay( avin SVi‘
92 m
S IPI
vEa;(i) i=1
1/2 1/2
2 " a:
2y (o
vEa;(i) i=1 vEa;(i) i=1
1/2
2 m ) "
= y Ty \/W_%(m )j
vEa;(i) i=1
5 m \L/2
S§A2] (Z T%) Vm(m —1)7/?
1=1
< CA%(m—1)", (3.25)

by lemma 2.2 where 6 = d,. Therefore, the series converges if 4°vm —1<1. W

Proc. R. Soc. A (2008)
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(ii) S(z) satisfies the boundary condition
Here, we prove that S(z) satisfies the boundary condition
Re {(2 = $j)S(2)}.ec, = 0, (3.26)

as claimed in the proof of the main theorem. We will use the formula

w w*
=1 2
Re{w—1+w*—1} ; (3.27)

where w and w*=1/w are symmetric points with respect to the unit circle.
The following theorem shows, for general m, that S(z) satisfies the boundary
condition for f'(2)/f(2).

Theorem 3.4. If 4<(m — 1)_1/4, then for z € C;

Re {(z— 5)Sy(2)} = O((4*Vm —1)"), (3.28)

and
Re {(z—s;)S(2)} = 0. (3.29)

Proof. The idea of the proof is, for z € C,, to use properties of the reflections
(2.2) to group terms in Sy(z) related by reflection p, through C, with z € C, as
follows:

1 1 1 1
) (e )] om
z— @, zZ— ay, 2—8, 27 Sy

Then, multiplying by z— ¢,, we have in more detail,

(Z— sp)/(a_ Sp) + (z_ Sp)/(ap_ Sp)
(z—sy)/(a—s,) =1 (2—s,)/(a,— s,) — 1

L (z_ Sp)/(avi_ Sp) (z_ sp)/(pp(aui) - Sp)
22 2 <<z— 5o (o= 5) =1 (= 50/ (0 () — 55) — 1)

p,(a,:)

(z—s,)Sn(2) = -1+

_N_l - (z_ Sp)/(svi - Sp) (Z p)/(pp( ) Sp)
=0 i=1 Z% <(Z_Sp)/(svi_sp)_1 +(z_5p)/( ( ) p)_1>

(z—s, ZZ S (Z_a (;j”s_ )>. (3.31)

=1, = ljvEUV j” Jvi
F&P

Proc. R. Soc. A (2008)
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We take the real part of the above expression and using, for instance, w= (z— s,)/
(@, — s,) and noting that w* = (z—s,)/(p,(a,) — s,) (3.27) gives

(z_ Sp)/(av - sp) (Z_ Sp)/(pp(zv) - Sp)
Re{(z— )/ (@ =350 =1 (= 5,)/ (o, (a) — 5,) — 1}

*

w w
Re{w_1+w*_1} (3:32)

Taking the real part of (3.31), we see that the first three lines sum to 0. The final
m—1 terms, all lying inside circles Cj, i # p, approximate the truncation error and
are estimated by

Y o< A4Nir?. (3.33)
i=1

VEOL 1

This gives our final result
Re{(z— 5,)Sn(2)} = O(Vm — 1(4*" (m — 1)), (3.34)
|

(b) Circular slit maps

The derivation of the map, w= f(z) from an unbounded circle domain to the
conformally equivalent unbounded circular slit domain is similar to that of
the radial slit domain. This map is closely related to the Green’s function for
the Dirichlet boundary-value problem. Once again f(a)=0 and f(o)= o with
f(2) ~z,z=o. Again, q; is the reflection of a across circle C; and ¢;=s;, the
centre of circle Cj, is the reflection of o« across C; In the w-plane, 0 and oo
just reflect back and forth to each other. Therefore, when we extend f, we will
have f(a;)=o and f(s;)=0. In this way, we see that all odd numbers of
reflections a,;:=p, (a;), |v,|]=2k+ 1 of a; and all even numbers of reflections
8, 7= Py, (¢;), [v,| = 2k of ¢; will be simple zeros, f(a,;)= f(s,;) = 0. Likewise, all
odd numbers of reflections s, ;,[v,|=2k+1 of ¢; and all even numbers of
reflections a, ;, [v,| =2k of a; will be simple poles, f(a,;)=f(s,;)=%. The
infinite product for w= f(z) therefore has the form, '

— (z—a) ﬁ H (Z_ Py, (az))(z_ pu,/,(ci)) ) (335)
=1 i=0

(2= py (@) (2= py,(¢:)

waoea](i)

(where reflections back to a or o are excluded from the product) with
f(a) =0, provided the m circles with centres ¢, satisfy our standard separation
criterion.

Now note that, if a circular slit in the w-plane is at radius r, then w reflects to
r?/w. Reﬂectlon through another circular slit with radius 7, will then take w
to (r5/m)*w, and so on. Therefore, an even number successive reflection through
circular slits will take w= f(2) to Aw= Af(z), for some A real. As a result, the
extended function f'(z)/f(z)= Af'(2)/Af(z) is invariant under even numbers
of reflections and hence is single valued. Here, our singularity function, in
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non-convergent form, will be

5(2) = (/1) = log (2)

1 . = Ay i = Sui Sp,i T Gy
S@= v X ((z— 0 (o~ >> * ((z— (e >>

7=0
Ve, €0;(i)
(3.37)
Again, our task is to show that f'(2)/f(z) = S(z). Note that, again,
flz) 1 1 1 J1
=—+ | d Skz)=—+|=|. 3.38
flz) =z ] (2) z 2 (3:38)
We will show that the sums truncated to N levels of reflection,
no 1 1 1 1
Sw( - — - —
ol 2 ; Z@ <Z_aw' Z‘%z‘) (z_sm zZ= aw')’
VP,Vi_Eaj(i)
(3.39)

converge uniformly to S(z) for z € Q as N — w0, provided the circles satisfy our
separatlon condition, that S(z) satisfies an appropriate boundary condition, and
that f(z) = exp(] S(z) dz), our main theorem.

Our boundary condltlons are given by

Lemma 3.5. Im{(z— ¢;.)f'(2)/f(2)} =0,z € C,.
Proof. For z € C,, we have z= ¢; + el and since f(z) maps to circular slits,
we have log |f(z)| = Re log f(z)=const. Therefore,
0= iRe log f(z) = iRe log f(¢; + me'?) = Re 17’ke’9f = —Im rkeiaf—/(ck + ).
a0 30 f f

(3.40)
[

We now state our main theorem for circular slit maps.
Theorem 3.6. Let P be an unbounded m-connected circular slit region,
0,0 € P, and Q a conformally equivalent circular domain, a, oo € Q. Further-

more, suppose Q satisfies the separation property 4 < (m — 1) for m>1. Then
Q is mapped conformally onto P by fwith f(a) =0 and f(%) = % if and only if

=(2s—a . (2= py, (@) (2= py, ()
fa=Goll 1 =5 et &4

for some constant C.

Proc. R. Soc. A (2008)
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Proof. The proof follows the argument for the radial slit case, using the
modified convergence theorems and the following boundary conditions for
circular slits. |

(i) Convergence of S(z)
For j=0,1,2,..., we write

Z Z <(Z—(::;)_(;V—Oi 3m)> i ((z—s;;;)_(:fiam)) @42

i=ly,v,E€0;(i)

and hence, in brief notation,

N
Sx(2) = ;sz), 8(z) = lim Sy(2). (3.43)
Let
0=0g = ing{\z— al,|z— s k=1,...,myv € a}. (3.44)
ze

Then, clearly 6 <0 holds since the a,’s and the S,’s lie inside the circles.
The convergence of Sy(z) to S(z) is identical to theorem 3.3 for the radial
case. The details of the proof are nearly identical and we omit them.
(ii) S(z) satisfies the boundary condition.
Here, we prove that S(z) satisfies the boundary condition

m{ (2= 5)5(2)}.cq, =0, (3.45)
as claimed in the proof of the main theorem. We will use the formula
w w*
I - =0 3.46
m{ w—1 w'— 1} ’ ( )

where w and w* = 1/w are symmetric points with respect to the unit circle.

The following theorem shows, for general m, that S(z) satisfies the boundary

condition for f'(z2)/f(z).
Theorem 3.7. If A< (m —1)"Y*, then for z € C,
Im {(2= 5;)Sy(2)} = O((4*Vm —1)"), (3.47)
and
Im {(z—s;)S(2)} = 0. (3.48)

Proof. The idea of the proof is, for z € C,, to again use the properties of
reflections (2.2) to group terms in Sy(z) related by reflection p, through C, with
z € C, as follows:

0= [ ()]
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where the plus sign is used if |v| is even and a minus sign if |v| is odd. Then,
multiplying by z— ¢,, we have in more detail,

(Z_ Sp)/(a’_ sp) (Z— Sp
(z=sp)/(a=s,) =1 (2= s,)/

N—1 m (z—s,)/(a,;— s,) _ (z— s,
iZZ > <(z—sp)/(aw;—5)—1 (2= s,)/

p

gl (z_ Sp)/(suz' - 5p> i (Z p)/(pp( ) Sp)
+ =0 ; Vg%)’ <<Z_ sp)/(svi_ Sp) -1 (z Sp)/(pp( ) Sp) - 1)

)P <z—am><z8jwsjm>>' (3:50)

j=1, 1=1 jy€ay(i)
i

We take the imaginary part of the above expression and using, for instance,
w=(z—s,)/(a, — s,) and noting that w* = (z— s,)/(p,(a,) — s,), (3.46) gives
Im{ (z=s)/(a—=5) (2= 5)/(pp(2) = 5) }

(Z_ sp)/(a’u - Sp) —1 (Z— Sp)/(pp(av) - Sp) —1

*

=Im{ R }=0. (3.51)

w—1 w ' —1

Taking the imaginary part of (3.50), we see that the first three lines sum to 0.
The final m—1 terms, all lying inside circles C;, i# p, approximate the
truncation error and are estimated by

> orp<a zm: r2. (3.52)
i=1

VET, 1

This gives our final result
Im{(z— s,)Sy(2)} = O(Vm —1(4 (m —1)/?). (3.53)
H

(¢) Circular and radial slit map

Here we consider the map w= f(z) from the exterior of m discs to the exterior
domain bounded by a mixture of radial and circular slits. This map is discussed
by Koebe (1916). The mapping formula that we derive here appears to be new. It
is not discussed, for instance, in such standard presentations as Nehari (1952) or
Schiffer (1950).

Choosing a point a € Q, we let f(a)=0 and f() =0 with f(z)/z= O(1),
z— . Reflections through radial slits will keep 0 and o fixed, whereas that
through circular slits will swap 0 and o as in the circular slit map above. Let p,
denote a sequence of reflections with an even number of reflections through
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Figure 4. Map to radial slit domain using least-squares method.

circular slits and p, denote a sequence with an odd number of reflections through
circular slits. Then, p, (a) and p, (%) are simple zeros of f(z) and p, (*) and
py,(a) are simple poles. Therefore, we have

) = Ce—a [] CZ 2l ONEZ 2]

Ve, (Z_ pyc(oo))(z— pvu(a)) '

(Note that the product over i =1, ..., m is already included in the reflections of a
and o and does not appear explicitly here.) Using arguments like those for the
radial and circular slit mappings, one can prove that the separation and
convergence theorems hold for the mixed radial and circular slit boundary
components. We omit the details of the proof. Figure 3 is a graph of an m=4 case
with two circular and two radial slits produced by evaluating a truncated version
of (3.54).

Remark 3.8. Numerical experiments indicate that our convergence criterion
for the infinite product formulae is probably not necessary for convergence. We
have been unable to find a condition that is both necessary and sufficient.

(3.54)

4. Numerics using least squares

The characterization by means of reflections of the slit maps considered in this
paper is natural and leads to straightforward derivations. On the other hand, as
the number of circles and slits grows, the required number of reflections for a
prescribed accuracy grows exponentially and computation times become
impractically large. As an anecdotal example, in one case of the maps like that
in figure 4, if m was increased from 3 to 4, the computation time on the third
author’s laptop increased from 3.5 to 3970 s. Therefore, it is essential to find fast
algorithms to compute these maps. We describe such a procedure here.

The idea is closely related to an algorithm given by Trefethen (2005) for
finding the Green’s function for the exterior of discs. We begin by expressing the
desired map f as

log f(z) = log (z—a) + g(2), (4.1)

for a function ¢ that is analytic in  (and its boundary, according to equations
(3.1) and (3.35)). This form imposes the normalizations f(a) =0 and f(o)= co.
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Box 1.
MaATLAB code for finding the parameters and computing the values of a radial slit map

function f = radialslitmap(center,radius,N,J)
m = length(center);

% Returns the inverse powers used as a basis for the solution.
function A = basisfuncs(z)

for k = 1:m
for j=1:J
AC:,Jx(k-1)+j) = 1./(z-center(k))."j;
end
end
end

% Points on circles.
z = zeros(N,m);

for k = 1:m

z(:,k) = center(k) + radius(k)*exp(2i*pi*(0:N-1)’/N);
end
z =2z(:);

% Basis functions
A = basisfuncs(z);

% Convert to real form.

ARI = [ imag(A), real(d) 1;

% Pairwise differences around each individual circle.

D = toeplitz( [1 -1 zeros(1,N-2)], [ 1 zeros(1,N-2) -1] );
E = kron(eye(m),D);

% Set up and solve the linear least-squares system
rhs = -Eximag(log(z));

xRI = (E*ARI) \ rhs;

x = xRI(1:end/2) + 1i*xRI(end/2+1:end);

fprintf(’ residual estimate = %.3e\n\n’,norm(Ex*ARI*xRI - rhs))

% Create a callable function for the map
f = Qrsmap;

function w = rsmap(z)
A = basisfuncs(z(:));
w = zeros(size(z));
w(:) = log(z(:)) + A*x;
end

end
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Box 2.

Driver for the code in box 1 for the map from an exterior domain bounded by five circles to a

radial slit domain

% Circle parameters.

center = [3*exp(li*pi/4), -1.5i, -3+2i, 2-1i, 1.5i];
radius = [ 0.7 0.5 1 .75 1];

m = length(center);

% Discretization parameters.
N = 300; J = 20;

% Solve for the map.
f = radialslitmap(center,radius,N,J);

% Points on the circles.
zc = repmat (exp(2*pi*1i*(0:200)°/200),1,m)*diag(radius) ;
zc = repmat(center,201,1) + zc;

% Define grid of points in the circle domain.

x = linspace(min(real(zc(:)))-1,max(real(zc(:)))+1,120);
y = linspace(min(imag(zc(:)))-1,max(imag(zc(:)))+1,120);
[X,Y] = meshgrid(x,y); Z = X + 1ixY;

% Keep only those points outside the circles.

mask = true(size(Z));

for k = 1:m
mask(abs(Z-center (k) )<radius(k)) = false;
end

Z("mask) = Nal;
W =12Z; W(mask) = f(Z(mask)); % evaluation on the grid

% Plotting of level curves and point images.
subplot(1,2,1) % circle domain
plot(zc,’.-?)

axis equal, hold on

levels = ((1:15)/16) * exp( max(real(W(:))) );
contour (X,Y,real (W) ,log(levels),’k’)

plot(Z(1:2:end,1:2:end),’.’,’color’,[.5 .5 .5], ’markersize’,3)
subplot(1,2,2) % slit domain

plot(exp(£f(zc)),’.-?)

axis equal, hold on

plot(exp(W(1:2:end,1:2:end)),’.’,’color’,[.5 .5 .5], ’markersize’,3)

plot (exp (2*pi*1i*(0:200)’/200)*levels, ’k’)

The remainder g(z) is then expanded in the form
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which allows singularities in each of the circles. In practice, we discretize the
boundary of Q by placing N equally spaced points on each of the circles and
express the double sum of (4.2) as a matrix—vector product Az, where each
column of the matrix A is the discretization of some (z— ¢;) 7 and z= [ay].
The unknown coefficients in z are determined by the fact that Im (log f)
is constant on radial slits and Re (log f) is constant on circular slits. Indeed, the
key fact is that we can impose these conditions linearly. To do this, we need to
break both A and z into its real and imaginary parts. Letting A= Ag +iA; and
x=ax + iz, we trivially get
[Re g] = ARZER - AIZL'I, [Im g] = AISCR + AR{L‘I. (43)
For concreteness, let us continue the discussion in terms of the radial slit
case. The constant values of Im log f on each slit are not known in advance.
Instead, we ask that pairwise differences of Im log f be zero around each circle.
Defining

1 -1
D
-1 1
D
D= -1 1 , E = , (4.4)
D
I 1 1 | mNXmN
we arrive at the expression
E[A; Ag] [zR] ~—E[Im log(z — a)], (4.5)
Ir

which is an ordinary linear least-squares problem for the unknown coefficients.
This problem can be solved very quickly even for fairly large discretizations.

Box 1 shows a MATLAB code based on these ideas. The expression (4.1) and
(4.2) for the map is so simple that the function returns a callable object that
evaluates to the computed function. Box 2 illustrates how the code can be used to
map points and create level curves for a domain bounded by five circles. This
example is given in figure 4. Computing the map parameters (setting up and
solving the least-squares system) took approximately 3 s on a 1.4 GHz Pentium-
M laptop.
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