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Abstract. We have recently derived a Schwarz-Christoffel formula for the
conformal mapping of the exterior of a finite number of disks to the exterior
of a set of polygonal curves [5]. In this work we show how to formulate a
set of equations for determining the parameters of such a map. A number of
examples are computed, including exteriors of multiple slits. We also recall
the derivation of the mapping formulae and give a new formula for the doubly
connected case.
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1. Introduction

Three of the authors have shown that the Schwarz-Christoffel mapping formula
can be generalized from the simply connected setting to the multiply connected
setting for any finite connectivity [5]. In this work we show how to formulate
a finite set of equations to determine the unknown parameters in a conformal
map from the exterior of m circles to the exterior of m polygonal curves. (As in
the case of the usual Schwarz-Christoffel map, these can include doubly covered
slits, which are important for some applications.) We describe a numerical imple-
mentation of the solution of these equations and present examples which show
our progress in creating a general numerical algorithm for multiply connected
Schwarz-Christoffel maps.

This paper will consider only exterior maps, but a similar, and simpler, formula
has been derived for bounded domains, and this will be reported by the first
author in a separate work [3]. There, as here, the key idea in the derivation
is the use of reflection to obtain the correct singularity function S(z) which is
shown to be equal to f ′′(z)/f ′(z). In this regard, we mention the recent work

Received October 7, 2005, in revised form April 17, 2006.

ISSN 1617-9447/$ 2.50 c© 2006 Heldermann Verlag

http://www.cmft.de


302 T. DeLillo, T. Driscoll, A. Elcrat and J. Pfaltzgraff CMFT

of Crowdy [2] in which an alternative formula is derived for bounded domains.
In that work special functions, called Schottky-Klein prime functions, are intro-
duced into the problem, and a formula which generalizes the known formula for
doubly connected domains in terms of theta functions is given. The connection
between that formula and the one obtained by reflection will be clarified in the
above mentioned work of the first author [3].

The remainder of the paper is organized as follows: In Section 2, we review the
derivation of the mapping formulae for the exterior simply, doubly, and multiply
connected cases using our reflection argument. We include a new formula for
the doubly connected case. In Section 3, we formulate a non-linear set of equa-
tions for computing the parameters of the mapping function. In Section 4, we
discuss other aspects of our numerical algorithm and give several computational
examples.

2. The reflection argument

2.1. Preliminary review of simply and doubly connected problems.
Suppose that f is a conformal map of Ω = {|z| > 1} onto the exterior of a
K-sided bounded polygon in the w-plane with vertices wk, k = 1, . . . , K and
f(∞) = ∞. Denote the w-plane region by P and the prevertices on |z| = 1 by
zk with f(zk) = wk. The angle of rotation from side −−−−→wk−1wk to −−−−→wkwk+1 in the
counterclockwise direction is αkπ. We define the turning parameters βk = αk−1,
then βkπ = arg(wk+1−wk)− arg(wk−wk−1) is the turning of the tangent at the
k-th vertex of the polygon. The closure of the polygon requires

K∑
k=1

βk = 2.

Then we have to show that

f ′′(z)

f ′(z)
= −2

z
+

K∑
k=1

βk

z − zk

, z ∈ Ω.

The exterior Schwarz-Christoffel formula

f ′(z) = c

K∏
k=1

(
1− zk

z

)βk

follows directly from this by integrating and exponentiating.

The key then is to show that the pre-Schwarzian f ′′(z)/f ′(z) has the form shown.
When f(z) is continued analytically by reflection (an even number of times)

across an arc of |z| = 1 between prevertices, a function f̃(z) = af(1/z) + b
is obtained for some constants a and b. This transformation leaves the pre-
Schwarzian invariant. Then f ′′(z)/f ′(z) is analytic on C \ {0, z1, . . . , zn}. The
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point 0 enters the picture here because ∞ is an interior point of Ω and f has a
simple pole there.

The usual local argument, e.g. [9, p. 478], shows f̃ ′′(z)/f̃ ′(z)−
∑m

k=1 βk/(z− zk)
is analytic in C \ {0}. If we write

f(z) = cz + c0 +
c1
z

+
c2
z2

+ · · · , c 6= 0,

we can say, after reflection through |z| = 1,

f̃ ′′(z)

f̃ ′(z)
= −2

z
− 2c1

c
z + · · ·

for z near 0, so that

f̃ ′′(z)

f̃ ′(z)
+

2

z
−

K∑
k=1

βk

z − zk

=: E(z)

is an entire function. The familiar argument makes the observation at this point
that E(z) is analytic at ∞ with E(∞) = 0 and applies Liouville’s Theorem. It
is useful for us to point out an alternative argument. We use the following steps.

1) If w(t) = f(eit), the tangent angle on the image polygon is

ψ(t) = arg(w′(t)) = arg(ieitf ′(eit))

and since ψ is piecewise constant

ψ′(t) = 1 + Re

(
eitf

′′(eit)

f ′(eit)

)
= 1 + Re

(
z
f ′′(z)

f ′(z)

)
= 0

between prevertices.
2)

Re

(
−z

K∑
k=1

βk

z − zk

)
= −

K∑
k=1

βk Re

(
zzk

zzk − 1

)
= −

K∑
k=1

βk
1

2
= −1

on |z| = 1, z 6= zk since Re(z/(z − 1)) = 1/2 for |z| = 1.
3) From 1) and 2) Re(zE(z)) = 0 for z 6= zk, and then, by continuity, for |z| = 1.
4) The harmonic function Re(zE(z)) is zero on |z| = 1. For large |z| we can

write

z
f ′′(z)

f ′(z)
=

2 c1
c

z2
+

6 c2
c

z3
+ · · ·

and

z

(
2

z
−

K∑
k=1

βk

z − zk

)
= −1

z

K∑
k=1

βkzk

1− zk

z

,

so that Re(zE(z)) is zero on Ω, and zE(z) is constant there. The constant is
zero by virtue of the above identities.
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We note for future reference that, since the expansions at ∞ of f ′′(z)/f ′(z) and
E(z) must agree, we have

2 c1
c

z3
+

6 c2
c

z4
+ · · · = −2

z
+

K∑
k=1

βk

z − zk

=

(
K∑

k=1

βkzk

)
z−2 + · · ·

so that the constraint

(1)
K∑

k=1

βkzk = 0

necessarily holds. There is some question about whether this constraint should
be included as an equation in a numerical algorithm or if it should be used as a
check on computations. We will return to this question in a more general context
later.

It is also useful for us to generalize this formula to the case when f(p) = ∞
where p is a finite point in Ω. Since f has a simple pole at p we can deduce that

f ′′(z)

f ′(z)
∼ − 2

z − p

for z near p and when f is reflected across an arc of |z| = 1, p is reflected to
p∗ = 1/p, and

f ′′(z)

f ′(z)
∼ − 2

z − p∗

for z near p∗. We skip the argument that shows that

f ′′(z)

f ′(z)
=

K∑
k=1

βk

(
1

z − zk

− 1

z − p
− 1

z − p∗

)
in this case.

For the doubly connected case we consider first the map from the interior of an
annulus to the exterior of two polygons; see Figure 1. We may take the annulus
to be Ω = {µ < |z| < 1}, q ∈ Ω with f(q) = ∞, vertices wk,1, 1 ≤ k ≤ K1

(indexed counterclockwise) with turning angles βk,1π on one of the polygons,
wk,0, 1 ≤ k ≤ K0 (indexed clockwise) with turning angles βk,0π on the other,
and f mapping |z| = µ to the first polygon with f(zk,1) = wk,1, |z| = 1, to the
other with f(zk,0) = wk,0.

This mapping function f can be constructed directly by reflection. We analy-
tically continue f across each arc of |z| = µ to obtain an analytic function on
µ2 < |z| < µ. The function obtained is multivalued since different reflections are
obtained across different arcs, but the global analytic function obtained has a
single-valued pre-Schwarzian f ′′(z)/f ′(z). We do the same thing across arcs of
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Figure 1. Notation for the map from an annulus to the exterior
of two polygons.

|z| = 1 to 1 < |z| < 1/µ. Then the process can be continued both inwards and
outwards to obtain a global analytic function on C \ V \ {0} where

V :=
∞⋃

j=−∞

(
K0⋃
k=1

{µ2jzk,0} ∪
K1⋃
k=1

{µ2jzk,1} ∪ {µ2jq} ∪ {µ2jq−1}

)
are the reflections of the prevertices and the pole q. (For more details see [4],
where the bounded problem was dealt with.) The same local analysis as before
shows that f ′′(z)/f ′(z)−βk,l/(z−µ2jzk,l), j = . . . ,−1, 0, 1, . . . , l = 0, 1 is analytic
near µ2jzk,l. This leads to the definition

S(z) =

K0∑
k=1

[
βk,0

∞∑
j=−∞

(
1

z − zk,0µ2j
− 1

z − qµ2j

)]

+

K1∑
k=1

[
βk,1

∞∑
j=−∞

(
1

z − zk,1µ2j
+

1

z − q−1µ2j

)]
of the singularity function for this problem. The rearrangement

S(z) =
∞∑

j=0

K0∑
k=1

βk,0

(
1

z − zk,0µ−2j
− 1

z − qµ−2j

+
zk,0µ

2(j+1)

z(z − zk,0µ2(j+1))
− qµ2(j+1)

z(z − qµ2(j+1))

)

+
∞∑

j=0

K1∑
k=1

βk,1

(
zk,1µ

2j

z(z − zk,1µ2j)
− 1

z − q−1µ−2j

+
zk,1µ

2(j+1)

z − zk,1µ−2(j+1)
− q−1µ2(j+1)

z(z − q−1µ2(j+1))

)
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follows from, e.g.

1

z − zk,0µ2(j+1)
=

1

z
+

zk,0µ2(j+1)

z2

1− zk,0µ2(j+1)

z

,

1

z − zk,1µ2j
=

1

z
+

zk,1µ2j

z2

1− zk,1µ2j

z

and
∑K0

k=1 βk,0 = −
∑K1

k=1 βk,1 = 2, (see [4]) and this form makes the convergence
transparent. By construction f ′′(z)/f ′(z) − S(z) is analytic in 0 < |z| < ∞.
With this form of S(z) we can readily show that Re(zS(z)) = −1 for |z| = µ, 1
between prevertices and deduce by continuity and the Maximum Principle that
Re(zf ′′(z)/f ′(z) − zS(z)) = 0 for µ < |z| < 1. The imaginary part is then
constant. A simple argument [4], omitted here, shows the constant is zero. We
have used an annulus here as a canonical domain to make the reflections easier
to visualize, but replacing Ω with the exterior of two disks is easily done by using
the explicit map ζ = (z − p)/(1 − pz) for z outside the unit disk and outside
another disjoint disk with p inside this second disk. If q = −1/p, the image of ∞,
then f((z − p)/(1− pz)) is the required map. We remark that the formula

f ′(z) = A

K0∏
k=1

[
Θ

(
z

µzk,0

)]βk,0 K1∏
k=1

[
Θ

(
µz

zk,1

)]βk,1
[
Θ

(
ζ

µq

)
Θ

(
qζ

µ

)]−2

where

Θ(w) =
∞∏

j=0

(
1− µ2j+1w

)(
1− µ2j+1

w

)
can be derived from our formula, but we will make no use of this here.

2.2. The general formula. In [5], we have derived a general formula for the
map from the exterior Ω of m ≥ 2 disjoint disks to the exterior of m polygons P .
The idea is to find a singularity function S(z) such that

f ′′(z)

f ′(z)
= S(z)

for f , the map from f(z) = z+O(1/z), z →∞. This is done by reflection as was
reviewed in the simply connected cases discussed above. For higher connectivity
there is a hierarchy of levels of reflection in which the number of reflections at
each level increase by a factor of m− 1, so that there is an exponential increase
in the number of terms required in S(z). At the first level Ω is reflected through
each of the bounding circles to obtain bounded m connected regions inside of
each circle. At the next level each of these is reflected through each of its interior
m − 1 bounding circles. The process continues ad infinitum. The process is
indicated in Figure 2 below for m = 3 and 3 levels.
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Figure 2. Reflections of m = 4 circles to level N = 2.

We have introduced the multi-index notation

σn = {ν1ν2 · · · νn : 1 ≤ νj ≤ m, νk 6= νk+1, k = 1, ..., n− 1}
for n > 0, σ0 = φ, in which case νi = i, and

σn(i) = {ν ∈ σn : νn 6= i} .
The Schwarz-Christoffel formula derived in [5] could then be written

(2) f ′(z) = A
m∏

i=1

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(
ζ − zk,νi

ζ − sνi

)βk,i

where νi = ν1 · · · νni if ν = ν1 · · · νn, zk,νi is the n-fold reflection of the prevertex
zk,i successively through circles Cνn , . . . , Cν2 , . . . , Cν1 . Similarly sνi is the n-fold
reflection of the center ci of the circle Ci bounding Ω.

Now f ′(z) is obtained by integrating and exponentiating S(z) = f ′′(z)/f ′(z)
where the singularity function S(z) is given by

S(z) =
∞∑

j=0

m∑
i=1

∑
ν∈σj(i)

(
Ki∑
k=1

βk,i

z − zk,νi

− 2

z − sνi

)
.

This result assumes convergence of the partial sums, SN(z), of the series above,
truncated after N levels of reflection j = 0, . . . , N , to S(z). Convergence has
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been proven when the disks in the circular domain are sufficiently well sepa-
rated [5]. The rate of convergence is expressed in terms of an explicit separation
parameter, ∆, defined in Section 4, below.

The key idea in the proof that this formula is correct is to show that

(3) Re((z − ci)S(z)) = −1

on each of the circles |z − ci| = ri bounding the circle domain Ω. This is the
m-connected analogue of the condition Re(zS(z)) = −1 for simply and doubly
connected problems.

We now have to formulate a set of equations for determining the free parameters
in (2) to get a conformal mapping from the circle domain Ω to P .

The condition analogous to (1) is

(4)
m∑

i=1

Ki∑
k=1

∞∑
j=0

ν∈σj(i)

βk,i (zk,νi − sνi) = 0.

We will not impose this condition as an equation; it will be used as a check on
our computations.

3. Formulation of equations

From the general theory [8], [9] of multiply connected maps it follows that given P
and the normalization condition f(z) = z+O(1/z) for z ≈ ∞, there is a unique
circular domain Ω and a unique f such that f maps Ω onto P .

The parameters available to solve the problem are the prevertices zk,i such that
wk,i = f(zk,i) for k = 1, . . . , Ki, i = 1, . . . ,m, where wk,i are the corners of
∂P = Γ = Γ1∪· · ·∪Γm. These prevertices are parameterized as zk,i = ci+rie

iθk,i ,
where

θ1,i < θ2,i < · · · < θKi,i, i = 1, . . . ,m.

The ci’s, ri’s, and θk,i’s are

K1 +K2 + · · ·+Km + 3m

real parameters. They are also exactly the parameters needed to determine the
Schwarz-Christoffel product

p(z) =
m∏

i=1

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(
z − zk,νi

z − sνi

)βk,i

.

The normalization f(z) = z + O(1/z) at infinity is difficult to impose on our
formula, so we relax this to

(5) f(z) = Az +B +O
(

1

z

)



6 (2006), No. 2 Computation of Multiply Connected Schwarz-Christoffel Maps 309

and formulate equations which determine A and B implicitly. Our formulation
of these equations borrows an idea from the original SCpack of Trefethen [10].
We fix c1 = 0, r1 = 1, and θ1,1 = 0. This removes four of the disposable real
parameters; it can be done because we use (5). Then writing

(6) f(z) = C

∫ z

z1,1

p(z) dz +D

we can say D = f(z1,1) = w1,1 and

(7) C =
w2,1 − w1,1∫ z2,1

z1,1
p(z) dz

.

This leaves K1 + · · ·+Km +3m− 4 real parameters. (We may think of A and B
as being determined by C and D.) There are K1 − 1 side lengths to impose
on the first polygon (the definition of C automatically determines the first side
length) and K2 + · · · +Km side lengths for the remaining polygons. These can
be written as side length conditions :

|f(zk+1,i)− f(zk,i)| = |wk+1,i − wk,i|,
i = 1, . . . ,m,
k = 1, . . . , Ki,

(k, i) 6= (1, 1).

There are 2(m− 1) (real) equations to fix positions of Γ1,Γ2, . . . ,Γm:

f(z1,i)− f(z1,1) = w1,i − w1,1, i = 2, . . . ,m.

and m− 1 equations to fix the orientations of Γ1,Γ2, . . . ,Γm:

arg(f(z2,i)− f(z1,i)) = arg(w2,i − w1,i), i = 2, . . . ,m.

Note that these can be combined with the side length conditions for k = 1 as:

f(z2,i)− f(z1,i) = w2,i − w1,i, i = 2, . . . ,m.

We now have a total of K1 +K2 + · · ·+Km + 3m− 4, (real) equations, exactly
as many as we need.

Variations of this setup, such as integrating between neighboring circles to fix
positions instead of always from C1, can be substituted, as long as the number
and independence of the conditions is preserved. The automatic selection of the
best set of conditions is a topic for future research.

The equation

f ′′(z)

f ′(z)
= S(z) = O

(
1

z3

)
at z = ∞, which is equivalent to (4), is not imposed explicitly. It is required for
closure of the polygons, and we use it as a check on accuracy. Note that at least
S(z) = O(1/z2) is built in to our form of S(z).
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4. Examples

The evaluation of the integrals defining the K1 + · · ·+Km + 3m− 4 conditions
derived in the previous section is done here using Gauss-Jacobi quadrature on
the circular arcs and straight line paths naturally associated with the geometry.
For the examples presented here, a relatively simple procedure sufficed: a fixed
number of Gauss-Jacobi points are used for each integral (typically 30 points)
and the possible crossing of straight line paths with another circle is ignored. In
the next generation of the evolution of the computational algorithm, compound
quadrature [10] rules will be introduced and a path generation procedure which
avoids crossing a circle will be added. As the number of sides and components
are increased this will almost certainly become necessary.

For a given set of K1 + · · · + Km + 3m − 4 parameters, fixing C and D using
(6) and (7) and then approximating the remaining integrals using quadrature
yields the value of an objective function for the solution of the mapping problem.
The solutions we present are obtained by using this function together with the
continuation algorithm Contup of Allgower and Georg [1, Program 3].

In order to keep on the correct branch of the βk,i, we rewrite the product formula
as follows and truncate after N levels of reflection:

p(z) = A
m∏

i=1

Ki∏
k=1

∞∏
j=0

ν∈σj(i)

(
z − zk,νi

z − sνi

)βk,i

≈ A
m∏

i=1

Ki∏
k=1

N∏
j=0

ν∈σj(i)

(
1− zk,νi − sνi

z − sνi

)βk,i

.

The truncations after N levels of reflection are based on the method of images.
Successive reflections can be represented using the following lemma, where ρν(a)
denotes reflection of a through circle Cν .

Lemma 1 (cf. [5, Lem. 1]). ρ21(ρ2(a)) = ρ2(ρ1(a)).

For example, zk,1201 = ρ1(ρ2(ρ0(zk,1)) and C210 = ρ21(C20) = ρ21(ρ2(C0)) =
ρ2(ρ1(C0)). We have developed a Matlab code based on these observations to
produce the reflections of the prevertices and centers for use in our truncated
product formula.

The convergence results derived in [5] are formulated in terms of a separation
parameter ∆ for the circular boundary components of the computational domain.
Specifically, if Cj and Ck are two disjoint mutually exterior circles then they are
non-overlapping if and only if (rj +rk)/ |cj − ck| < 1 where rj is the radius and cj
the center of a circle. The quantity ∆ is the largest of these separation quotients
between all pairs of boundary circles. Our convergence estimates in [5] show that
convergence is rapid if the circles are well-separated, i.e. ∆ is small. We have
preliminary theoretical estimates on numerical errors based on our theory in [5]
and depending on the parameter ∆.

To give estimates for our numerical errors, we will use the following theorem
from [5] which estimates, for general m, how accurately SN(z), the series for
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S(z) truncated after N levels of reflection, satisfies the boundary conditions (3)
for S(z) = f ′′(z)/f ′(z).

Theorem 1. If ∆ < (m− 1)−1/4 then for z ∈ Ci, z 6= zk,i

Re((z − si)SN(z)) = −1 +O((∆2
√
m− 1)N)

and Re((z − si)S(z)) = −1.

In [5], we note that this convergence rate is not optimal for the known case
m = 2. This suggests the convergence results can be improved for the general
case, m ≥ 2. Indeed, we have observed convergence numerically when the con-
dition of Theorem 1 is violated.

In our first example, f maps to the exterior of two collinear slits [−1, 1] and [2, 5];
Figure 3. Table 1 gives results to illustrate the decrease in the truncation error
with respect to the decreasing radii rν of the reflected circles as N increases.
Bounds on the rate at which the sums of rν and the areas πrν

2 decrease as

N ∆4N
∑3

i=1 ri
2

∑
|ν|=N+1 rν

2
∑

|ν|=N+1 rν max bc error

0 1.04 · 100 1.04 · 100 1.42 · 100 3.54 · 10−2

1 2.77 · 10−2 1.74 · 10−3 5.82 · 10−2 1.54 · 10−3

2 7.41 · 10−4 3.25 · 10−6 2.52 · 10−3 5.67 · 10−5

3 1.98 · 10−5 6.07 · 10−9 1.09 · 10−4 2.85 · 10−6

4 5.30 · 10−7 1.13 · 10−11 4.70 · 10−6 1.06 · 10−7

5 1.42 · 10−8 2.12 · 10−14 2.03 · 10−7 5.32 · 10−9

6 3.79 · 10−10 3.96 · 10−17 8.77 · 10−9 1.98 · 10−10

7 1.01 · 10−11 7.39 · 10−20 3.79 · 10−10 9.78 · 10−12

8 2.71 · 10−13 1.38 · 10−22 1.64 · 10−11 8.97 · 10−13

Table 1. Decrease of radii of reflected circles and error in bound-
ary conditions for the example of two collinear slits in Figure 3.

the number of circles increase with each level of reflection are used to estimate
the convergence rate and how well the boundary conditions (max bc error) are
satisfied. A version of our non-linear equations that fixes the centers c1 and c2 is
used in this example. The values of the θk,i’s are solved for here but remain at
about 0 and 2π with nearby initial guesses. The initial guesses for the radii are
both 1, and the final values are r1 = .57688 and r2 = .83848 giving ∆ = .40439.
The homotopy search method [1] quickly finds a good initial guess for the Newton
method.

In Figures 3 and 4, the dots on a Cartesian grid in the circle plane are mapped to
the dots in the slit planes using a truncated Laurent series approximation to f(z)
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Figure 3. Map to the exterior of two collinear slits for Table 1.

as in [6, eq. (3)]. Since the normalization of f at infinity is f(z) ≈ Az + B, the
images of the Cartesian grids may be rotated or distorted when A 6= 1 and B 6= 0.
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Figure 4. Crowding of circles due to elongated channels between
the slits.

Figure 4 shows an example of a phenomenon which may be called a type of
“crowding” for the multiply connected case. Here elongated channels between
the slits cause the conformally equivalent circles to crowd together. This is
somewhat similar to a more (exponentially) severe crowding of the prevertices
for the simply connected Schwarz-Christoffel map from the disk to an elongated
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rectangle [7]. Note that the nearness of the slit tips in Figure 3 does not cause a
similar crowding of the circles.

The examples in Figures 5 and 6 were motivated by the work of van Deursen
[11, 12] on electromagnetic isolation of circuit elements. We see the equipotential
and force lines for the cross section of a cabinet and circuit element in Figure 5.
Van Deursen used the doubly connected Schwarz-Christoffel formula. In Figure 6,
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Figure 5. Example motivated by van Deursen paper.

a two part circuit element illustrates the potential application of our formulae
for higher connectivity to these circuit design problems.
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Figure 6. Map to circuit element with m = 3.



314 T. DeLillo, T. Driscoll, A. Elcrat and J. Pfaltzgraff CMFT

As in Figures 7 and 8, the images of concentric circles around the circles in Ω
in Figure 6 are plotted. The values of w are computed using Laurent series [6],
whereas the level curves in Figure 5 are computed using quadrature to find the
images of the level curves in Ω; these are given by an explicit map from an
annulus.
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Figure 7. Map for m = 3 to be compared with Figure 8.

Our last example, shown in Figures 7 and 8, shows maps to regions of higher
connectivity. Increasing the connectivity from m = 3 in Figure 7 to m = 4 in
Figure 8 increased the computing time dramatically, from 34 to 413 CPU seconds
on a PC (a factor of about 12). This shows a need for introducing more efficient
evaluation of the products in (2), an issue that is under study.
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Figure 8. Map for m = 4 case.
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