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A simple model in three real dimensions is proposed, illustrating a possible mechanism of transition 
to turbulence. The linear part of the model is stable but highly non-normal, so that certain inputs 
experience a great deal of growth before they eventually decay. The nonlinear terms of the model 
contribute no energy growth, but recycle some of the linear outputs into inputs, closing a feedback 
loop and allowing initially small solutions to “bootstrap” to a much larger amplitude. Although 
different choices of parameters in the nonlinearity lead to a variety of long-term behaviors, the 
bootstrapping process is essentially independent of the details- of the nonlinearity and varies 
predictably with the Reynolds number. The bootstrapping scenario demonstrated by this model is 
the basis of some recent explanations for the failure of classical hydrodynamic stability analysis to 
predict the onset of turbulence in certain tlow configurations. Q 1995 American Institute of 
Physics, 

I. INTRODUCTION 

For more than a century, it has been recognized that fluid 
flows in many geometries become turbulent at high Reynolds 
numbers, even under carefully controlled circumstances. Tra- 
ditionally, this phenomenon was analyzed by considering a 
small perturbation of the laminar flow and looking for expo- 
nentially growing solutions. Mathematically, this consists of 
linearizing the Navier-Stokes equations about the laminar 
flow, diagonalizing the resulting operator, and looking for 
eigenvalues in the unstable half-plane. 

While this procedure successfully predicts the onset of 
turbulence for some flow cormgurations, there are other con- 
figurations for which the transition to turbulence in experi- 
ments occurs at theoretically subcritical Reynolds numbers. 
Notable examples are plane Couette, plane Poiseuille, and 
pipe Poiseuille flows. The failure of the classical analysis has 
generally been attributed to the linearization about the lami- 
nar flow and has led to the development of theories that 
modify or eliminate that step. 

Recently, however, a new explanation for the failure of 
classical stability analysis has gained credence.ld6 This idea 
questions the diagonalization step rather than the lineariza- 
tion itself, because in each of the configurations just men- 
tioned, the linearized operator is highly non-normal-its 
eigenmodes are far from mutually orthogonal. A conse- 
quence of the non-normality is that even when all the eigen- 
modes of the operator decrease monotonically with time;;so- 
lutions can experience large transient growth by factors that 
scale with the Reynolds number. The enlarged perturbations 
could then potentially trigger nonlinearities leading to the 
transition to turbulence. 

Several attempts have been made to elucidate the role of 
the nonlinearities within this framework.rV6 Both Boberg and 
Brosa and Trefethen et al. propose a scenario that is-s&e- 
matically diagrammed in Fig. 1. A small perturbation is 
originally governed by the linear part of the equations, which 
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amplifies certain structures by large factors. In contrast to a 
normal linear process, in the non-normal case the input and 
output structures are different (in plane flows, for example, 
they may be streamwise vortices and streaks, respectively), 
and the linear process’alone cannot sustain the growth in the 
perturbation. The role of nonlinearities, then, is to transform 
some of the outputs back into inputs, closing the feedback 
loop in Fig. 1 and allowing the solution to “bootstrap” to a 
sustained higher amplitude. 

This scenario is deliberately vague about the details of 
the nonlinear terms of the governing equations. If detailed 
information about the turbulent state itself is desired, then 
these details must presumably be known, but as far as the 
qualitative fact of transition to turbulence is concerned, the 
only requirement is that the nonlinearities to some degree 
transform outputs of the linear operator into inputs. 

In this paper our aim is to lend credence to the concept 
of nonlinearity as a generic mixer. We propose a nonlinear 
system in three real dimensions adapted from the model ap- 
pearing in Ref./b. Our model has a non-normal stable linear 
part exhibiting transient growth characteristics analogous to 
those of the linearized Navier-Stokes operator for plane and 
pipe flows. The nonlinear part of the system has two free 
parameters but always contributes no energy to the system, 
only a mixing of the state variables. We present evidence that 
the bootstrapping scheme illustrated in Fig. 1 applies to this 
model. In particular, weshow that although different param- 
eter choices lead to quite different global system behaviors, 
the process of’trahsition from small amplitude to the global 
regime is remarkably uniform. 

In the course of writing this paper, we have become 
aware of a closely related work to appear by Gebhardt and 
Grossmamr.7 Like us, these authors are concerned with jus- 
tifying the scenario of Fig. 1 for transition to turbulence. 
Their equations are not !s simple, but more closely related to 
the physics, and, in particular, the role of convection in lim- 
iting instabilities is treated explicitly. Gebhardt and Gross- 
mann do not discuss what we call bootstrapping, nor do they 
explore the effect of generic nonlinearities and the variety of 
global dynamics. On the other hand, their paper includes 
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many observations not touched upon here, and we recom- 
me& it highly. 

Our principal conclusions are threefold: that the notion 
of nonlinearity as a generic mixer may capture the essence of 
the process of subcritical transition to turbulence; that a boot- 
strapping phenomenon may be central to this process, mak- 
ing the threshold perturbation amplitude for transition scale 
with a power of the Reynolds number less than - 1; and that 
sometimes, the ,global topological properties of a dynamical 
system may be of little relevance to the phenomena of physi- 
cal interest. 

II. THE MODEL 

Let u(t) eBg3 and consider the evolution equation, 

with the initial condition 

u(O)= EUO, 

(1) 

(2) 
with e>O’and lluoll = 1. Here A and B are real 3X3 matrices, 
as described below. We begin with the linear part: 

[ 

-i/R /3(R) 0 
A= 0 -2/R P(R) , 1 (3) 

0 0 -2/R 

with R>O and p(R) = 3.861,/m. Here A is a 
highly non-normal matrix whose evolution behavior exhibits 
a large degree of transient growth before exponential decay 
sets in, due to the negative eigenvalues. The parameter R, 
chosen in analogy with the Reynolds number in the nondi- 
mensionalized Navier-Stokes equations, regulates the ampli- 
tude and the time scale of the transient growth. The numbers 
2 and P(R) are selected so that [/e”11 achieves a maximum 
=R on a time scale "R; see Fig. 2. We emphasize that the 
defectiveness of A (it does not have a complete set of eigen- 
vectors) has nothtig to do with dynamics we study here, 
since we are only concerned with the non-normality of A. It 
could just as easily be chosen as any sufficiently non-normal, 
real matrix with the spectrum in the left half-plane, and we 
have achieved equivalent results with a nondefective choice 
ofA. 

The matrix B is any real, skew-symmetric (BT= -B) 
matrix normalized so that llBll= 1. This leaves two degrees 
of freedom for B. Since B is skew-symmetric, it is easily 
shown that 

thus the nonlinear term IlullBu conserves energy. 
The direction u. of the initial condition is (O,O, l)T. This 

vector is nearly parallel to the principal right singular vectors 
of eRA (the “optimal” defined in Ref. 2) and A-' (the maxi- 
mally “pseudoresonant” mode6). The important point is that 
the initial condition undergoes most of the transient growth 
afforded by the linearized equations, i.e., that lle%Oll rJ llefAll 
for t<R. 
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III. GLOi3AL BEHAVIOR 

We now summarize the dynamics the model (l)-(2) ex- 
hibits for various choices of the nonlinear coefficient matrix 
B. A natural starting point is to characterize the fixed points 
of the system. Setting the right-hand side of (1) to zero, we 
seethatuisafixedpointifandonlyifu=O,or 

A-'Bu= --u/~~u~~. (4) 
Thus, if u is a unit eigenvector of A-lB with negative real 
eigenvalue -X, then u= +vlX are fixed points of the sys- 
tem; moreover, all fixed points besides the origin correspond 
to such eigenpairs. Since B ,has rank 2, one eigenvalue of 
A-lB is zero, so the system may have 0, 1, or 2 symmetric 
pairs of fixed points, in addition to the origin. The Jacobian 
of the system (away from the origin) is 

J(u)=A+llullB+BuuT/llull, (5) 
and the stability properties of the fixed points are easy to 
compute. Note that J(U) =J(- u), so symmetric pairs of 
fixed points have identical stability characteristics. Finally, 
the Jacobian at the origin is just A, so the origin is always a 
stable fixed point. 

Rather than attempting to catalog the model’s behavior 
for all possible choices of B and R, we now investigate the 
global dynamics for four specific choices of Bj and R = 100. 
The matrices Bj , along with their associated fixed points and 
eigenvalues of the Jacobian, are listed in the Appendix; 
These four examples are fairly typical of most of the behav- 
iors observed over all choices of B. 

The first example, Bl , produces a pair of saddle points 
near the origin and a pair of sinks at a distance of order 1. In 
this case, trajectories that escape the vicinity of the origin 
spiral in to one of the other two sinks, as illustrated in Fig. 3. 

With B = B,, the only tied points are a pair of saddle 
points at a distance of order 10e4 from the origin. Here, 
solutions that leave the origin are destined to corkscrew 
away to infinity along one of two diametrically opposite di- 
rections, as in Fig. 4. 

The third example, B,, like the first, has two pairs of 
fixed points other than the origin: one pair near the origin 
and the other a distance of order of magnitude 1 away. En this 
case, however, all the fixed points are saddle points. There 
are now two possible global behaviors for solutions that do 
not decay to the origin. If the solution initially has a norm of 
about unity or less, the trajectory approaches one of two limit 
cycles, as in Fig. 5. On the other hand, if the initial condition 
has a norm much larger than unity, the solution spirals out 
slowly to infinity. 

Example B, has a fixed-point structure qualitatively 
similar to that of B,. The quantitative details, however, are 
sufficiently different to change the limit cycle behavior into 
chaos, as is shown in Fig. 6. Initial conditions of norm larger 
than unity still induce a spiral outward to infinity. 

The behaviors described above change if R is varied. At 
small R (less than ~20), all four examples have a pair of 
saddle points near the origin and a pair of sinks farther away; 
the dynamics resemble those depicted in Fig. 3. As R in- 
creases, the tied points near the origin are essentially un- 
changed, while the other pair moves or changes type. For B, 
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FIG. 1. “Bootstrapping” model of the transition to turbulence. 

and BZ, this pair remains stable but moves toward the origin 
or infinity, respectively. For B3 and B4, the sinks bifurcate 
into saddle points. 

Clearly these four choices of the coefficients of the non- 
linearity in (1) lead to entirely different global behaviors. We 
shall now show, however, that the process of a solution’s 
transition from small amplitude into global dynamics is re- 
markably similar for these four cases, and indeed many oth- 
ers. 

IV. TdANSlENT BEHAVIOR AND BOOTSTRAPPING 

Consider now Fig. 7, a different presentation of the so- 
lutions for the examples presented in the last section. Here 
we plot, for each choice of Bj , the norm of the solution state 
vector as a function of time for three solutions of (l)-(2), 
with ~=10-‘, lo-“, and 10m7. The curves with e=10e6 and 
10S7 show that these solutions grow by a factor of about R 
before eventually decaying exponentially, indicating that the 
linear part of the model dominates the dynamics for all 
time-in other words, the perturbation represented by the 
initial condition is practically infinitesimal. 

The curves with e=lO-’ correspond to the solutions pic- 
tured in Figs. 3-6. These are all solutions that exhibit tran- 
sition to global dynamics, and the curves for large times 
reflect the differences observed in the last section. Yet the 
initial phase looks quite similar in all four cases. Again there 

FIG. 3. Sink. [Model (l)-(2) with B=B, , l =lO-“.I The origin is marked 
by a star. 

is a short period of growth by a factor R induced by the 
linear terms. Now, though, the solution has evidently become 
large enough to enable the nonlinear terms to close the loop 
diagrammed in Fig. 1. Thus, the solution begins to bootstrap 
its way to a much larger amplitude. As the solution grows in 
amplitude, the details of the nonlinearity begin to exert a 
noticeable influence on the solution and the system has 
reached a fully “turbulent” state. 

Evidently, for each particular choice of B and R there is 
a threshold amplitude for the initial condition, above which 
the solution undergoes transition and below which it decays. 
A heuristic argument appearing in Ref. 6 predicts a simple 
dependence of this threshold on R. A solution starting with 
amplitude E grows to size of order ER after a time of order R, 
as the linear nonmodal amplification transforms input struc- 
tures (right singular vectors) into output structures (left sin- 
gular vectorsj. Over the same time, the nonlinear terms re- 
turn energy from outputs to inputs. This mixing is quadratic 
in the solution amplitude and acts over time R, so the regen- 
erated inputs have size R(ER)~. If the process is to be self- 
sustaining, the regenerated amplitude must be at least as 
large as the original: E= 0 [R ( ER)~], yielding a threshold of 
E= O(Rd3). This is in contrast to one’s natural first expec- 
tation that linear growth of O(R) would produce a threshold 
of O(R-I). 

Numerically, the transition threshold can be determined 
for each choice of B and R by a simple bisection. In Fig. 8 

-2.5 0 L 

“40 0.5 1 1.5 2 

Y 

FIG. 2. Transient growth in the linearized model. FIG. 4. Escape to infinity. [Model (l)-(2) with B =B* , B= lo-‘.I 
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FIG. 5. Limit cycle. [Model (l)-(2) with B =i3,, c=10m5.] 

we show the dependence of the transition threshold on R for 
the four examples of Sec. III. All four examples agree excel- 
lently with the heuristic, even though the global system be- 
havior changes for the different Bj and as R varies. Further- 
more, there is nothing special about these examples. Figure 9 
shows the results of the same threshold calculations for 50 
random matrices B, each generated by forming a matrix with 
independent entries drawn from a normal distribution of 
mean zero, taking the skew-symmetric part, and normalizing. 
Asymptotically the dependence of the threshold on R is cu- 
bic, as is illustrated in the histogram of Fig. 10. In one case, 
no transition was observed for very low values of R, but for 
R greater than about 20 the threshold is finite and demon- 
strates cubic dependence on R. 

The variation in heights of the curves in Fig. 9 is related 
to the efficiency of each B in transforming the principal out- 
put of the linear amplification back into the principal input. 
To quantify this efficiency, let u r and u r be the principal left 
and right singular vectors of eRA, corresponding to those 
output and input vectors, respectively, and define the “mix- 
ing index,” 

y(B)=u;B+ (6) 
In Fig. 11 we plot the transition threshold versus the mixing 
index for the 50 examples from Fig. 9, at R = 100. When 
y>O, the threshold varies as y-l, confirming that B's princi- 
pal action is to transform u1 into ul. When y<O, the rela- 
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tionship is less obvious; however, the negative feedback 
clearly weakens the bootstrapping mechanism. We also ob- 
serve that when IdCO.2, there is a greater tendency than 
otherwise for the transition threshold to vary from cubic de- 
pendence on l/R. This may be because linear amplification 
of secondary inputs plays a more important part. 

Vu CONCLUSIONS 

We, have shown that a simple three-dimensional model 
(1) with linear, nonmodal amplification and nonlinear mixing 
demonstrates a bootstrapping phenomenon in transition from 
small- to large-amplitude dynamics. The non-normality of 
the linearized system is the only source of energy growth for 
solutions, and the function of the nonlinearity is just to en- 
sure that some fraction of the linear outputs is recycled to 
inputs. As a result, nonlinearities that are quite different in 
the sense of,long-term behavior are similar when it comes to 
transition. This has been substantiated by verifying that the 
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FIG. 6. Chaos. [Model (l)-(2) with B=B,, e=10-5.] The time interval 
O~t=s700 isshown. FIG. 8. Threshold amplitude for the examples in Sec. III as a function of R. 
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FIG. 9. Threshold amplitude for 50 random choices of B as a function of R. 

transition threshold amplitude varies as O(Rm3) for random 
choices of coefficients in the nonlinear part of our model, in 
accordance with the bootstrapping heuristic. 

Analogously, we believe that a transition threshold 
O(Rcy) with a<1 is characteristic of actual plane Couette 
and pipe PoisemIle flows, as conjectured in Ref. 6. We do not 
claim that this exponent is -3. In fact, several recent works 
have aimed at determining how the threshold amplitude 
scales with the Reynolds number. Kreiss et aLa have proved, 
for plane Couette flow, a lower bound of O(R1”1’4) below 
which all disturbances eventually decay. Direct numerical 
simulations have revealed disturbances whose amplitudes 
scale as Rm514 and RmTf4 for plane Couette and Poiseuille 
flows, respectively.9 As mentioned in Ref. 6, the presumed 
reason why real flows may not exhibit an exponent as low as 
-3 is that the nonlinear interactions in the Navier-Stokes 
equations act across modes via selection rules that our sim- 
plified equations do not model. 
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FIG. 11. Threshold amplitude versus mixing index y at R = 100. 

Our study supports the hypothesis that nonlinearities can 
be viewed to some degree as generic energy mixers. Our 
low-order model displays a variety of global behaviors, but 
we do not claim that it can approach the complexity of fully 
developed turbulence, which is thought to be an inherently 
high-dimensional phenomenon. Nor do we claim that it cap- 
tures the process of transition to turbulence in a physically 
detailed way. For example, we do not take into account the 
mean flow deviation, and one consequence of this is that the 
evolution of our disturbance does not exhibit an initial over- 
shoot before settling to a level that is roughly independent of 
the Reynolds number, as is often the case in real fluid flows. 
In fact, our solutions can grow unboundedly. Nevertheless, 
we feel our model demonstrates an essential mechanism of 
transition to turbulence for flows with highly non-normal 
linearizations. The same conclusion has been reached by Ge- 
bhardt and Grossmann on the basis of their more physical 
set of equations. 

TABLE I. Fixed points of the four examples. 

Fit pair, spectrum of J Second pair, spectrum of J 

FIG. 10. Histogram of slopes in Fig. 6. Each slope is obtained from a 
least-squares linear fit to the threshold data for 1036R6104. 
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APPENDIX: MATRICES USED FOR EXAMPLES 

The four matrices Bj used for the examples in Sets. III 
and IV are 

-0.6845 47 -0.114 036 

0 0.719 994 ) 

-0.719 994 0 I 

B2= 

B3= 

0 -0.559 04 -0.398 39 

0.559 04 0 0.727 159 , 

0.398 39 -0.727 159 0 1 
0 -0.910 217 -0.181 441 

0.910 217 0 0.372 269 

0.181 441 -0.372 269 0 1 3 

-0.905 766 -0.345 222 

0 0.245 783 . 

0.345 222 -0.245 783 0 1 
The fixed points and corresponding Jacobian eigenvalues 

are tabulated in Table I. 
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