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INDEPENDENT GRIDS\ast 
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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The additive Schwarz method is usually presented as a preconditioner for a PDE
linearization based on overlapping subsets of nodes from a global discretization. It has previously
been shown how to apply Schwarz preconditioning to a nonlinear problem. By first replacing the
original global PDE with the Schwarz overlapping problem, the global discretization becomes a
simple union of subdomain discretizations, and unknowns do not need to be shared. In this way,
restrictive-type updates can be avoided, and subdomains need to communicate only via interface
interpolations. The resulting preconditioner can be applied linearly or nonlinearly. In the latter
case, nonlinear subdomain problems are solved independently in parallel, and the frequency and
amount of interprocess communication can be greatly reduced compared to global preconditioning
of the sequence of linearized problems.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . partition of unity, polynomial interpolation, domain decomposition, additive
Schwarz

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N55, 33F05, 97N40

\bfD \bfO \bfI . 10.1137/19M1242483

1. Introduction. Overlapping domain decomposition has been a valuable aid
in solving PDEs since Schwarz first described his alternating method in 1870. (For
technical introductions to the topic, see [8, 13]; for a more historical perspective,
see [10].) Overlapping decomposition provides a way to solve a problem on a global
domain by exploiting its reduction to smaller subdomains. This creates geometric
flexibility and allows special effort to be focused on small parts of the domain when
appropriate. Domain decomposition also affords an attractive natural parallelism.

For a linear PDE, one typically seeks to apply a preconditioner for a Krylov it-
eration such as GMRES in the form of solving problems on overlapping subdomains
whose boundary data is in part determined by values of the solution in other subdo-
mains. In the parallel context, this is achieved by an additive Schwarz (AS) scheme.
When one partitions the unknowns of a global discretization into overlapping subsets,
the best forms of AS are restricted AS (RAS) methods [5], which do not allow multiple
domains to update shared unknowns independently and thus overcorrect. Typically,
then, the subdomain problems are solved on overlapping sets, but the results are
distributed in a nonoverlapping fashion.

For nonlinear problems, the obvious extension of AS preconditioning is to apply it
as described above on the linearized equations that are determined by a quasi-Newton
iteration. This process constitutes a Newton--Krylov--Schwarz (NKS) procedure [3],
reflecting the nesting order of the different elements of linearization, linear solver, and
preconditioning.
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NONLINEAR PRECONDITIONING FOR OVERLAPPING GRIDS A2361

Cai and Keyes [4] proposed instead modifying the nonlinear problem using the
Schwarz ansatz. In addition to yielding a preconditioned linearization for the Krylov
solver, the preconditioned nonlinear problem exhibited more robust convergence for
the Newton iteration than did the original nonlinear problem. They called their
method ASPIN, short for additive Schwarz preconditioned inexact Newton. As a
technical matter, they did not recommend applying the true Jacobian of the system,
preferring an approximation that required less effort. Subsequently, Dolean et al. [7]
pointed out that Cai and Keyes did not use the RAS form of AS preconditioning, and
they proposed an improved variant called RASPEN that does. We refer to this type
of nonlinear preconditioning as Schwarz--Newton--Krylov (SNK), because the Schwarz
ansatz is applied before the linearization begins.

Our interest is in applying the nonlinear preconditioning technique to spectral
collocation discretizations in overlapping rectangles or cuboids, leading to globally
smooth approximations constructed from a partition of unity [1]. In this context, there
is not naturally a single global discretization whose degrees of freedom are partitioned
into overlapping sets, because the Chebyshev (or Legendre, or other classical) nodes
will not generally coincide within the overlapping regions. In principle, one could link
the degrees of freedom within overlap regions by interpolating between subdomains,
but this process adds complication, computational time, and, in the parallel context,
communication of data within the overlap regions.

Here we present an alternative strategy that begins by replacing the original PDE
problem with the Schwarz problems on the union of the subdomains. That is, rather
than regarding the subdomains as solving the global PDE on a region that includes
portions shared with other subdomains, each subdomain has a ``private copy"" of its
entire region and is free to have its own solution values throughout. Of course, the new
global problem is not solved until the interface values of every subdomain agree with
values interpolated from other subdomains that contain the interface. As a Schwarz
starting point, our technique has both NKS and SNK variants.

In this formulation, interpolations need to be done only on lower-dimensional
interfaces, rather than throughout the overlap regions. Another trait is that plain
AS becomes preferred to RAS, because each subdomain has to update its own values
separately. We show that it is straightforward to implement exact Jacobians for
SNK with nothing more than the ability to do fully local nonlinear and linearized
PDE solves, plus the ability to transfer values between subdomains through interface
interpolations. We also derive a two-level method to prevent convergence degradation
as the number of subdomains increases. The performance of the NKS and SNK
methods is validated and compared through several numerical experiments.

2. PDE problem and multidomain formulation. The main goal of this
work is to solve the PDE

\phi (\bfitx , u) = 0, \bfitx \in \Omega ,(2.1a)

\beta (\bfitx , u) = 0, \bfitx \in \partial \Omega ,(2.1b)

where u(\bfitx ) is the unknown solution and \phi and \beta are nonlinear differential operators
(with \phi being of higher order). (We can easily extend to the case where u, \phi , and
\beta are vector-valued, but we use scalars to calm the notation.) Many Schwarz-based
algorithms for (2.1) begin with a global discretization whose solution is accelerated
by an overlapping domain decomposition. In this situation, some of the numerical
degrees of freedom are shared by multiple subdomains---either directly or through
interpolation---and proper use of additive Schwarz (AS) calls for the restricted AS
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A2362 KEVIN W. AITON AND TOBIN A. DRISCOLL

(RAS) implementation, which essentially ensures that updates of shared values are
done only once from the global perspective, not independently by the subdomains.

We take a different approach, replacing the original problem (2.1) with

\phi (\bfitx , ui) = 0, \bfitx \in \Omega i, i = 1, . . . , N,(2.2a)

\beta (\bfitx , ui) = 0, \bfitx \in \Gamma i0 = \partial \Omega \cap \partial \Omega i, i = 1, . . . , N,(2.2b)

ui = uj , \bfitx \in \Gamma ij = \partial \Omega i \cap \BbbZ j , i, j = 1, . . . , N,(2.2c)

where now u1, . . . , uN are unknown functions on overlapping subdomains \Omega i that
cover \Omega , and the Zi are nonoverlapping zones lying within the respective subdomains.
Clearly, any strong solution of (2.1) is also a solution of (2.2), and while the converse
is not necessarily so in principle, we regard the possibility of finding a solution of (2.2)
that is not also a solution of (2.1) as remote in practice.

The key consequence of starting from (2.2) as the global problem is that each
overlapping region is covered separately by the involved subdomains; each is free to
update its representation independently in order to converge to a solution. From one
point of view, our discretizations of the overlap regions are redundant and somewhat
wasteful. However, the fraction of redundant discrete unknowns is very modest. In
return, we only need to interpolate on the interfaces, there is no need to use the RAS
formulation, and the coarsening needed for a two-level variant is trivial (see section
2.3).

2.1. Discretization. We now describe a collocation discretization of (2.2) for
concreteness. Each subfunction ui(\bfitx ) is discretized by a vector \bfitu i of length ni. By
\bfitu = J\bfitu iK we mean a concatenation of all the discrete unknowns over subdomains
i = 1, . . . , N into a single vector. Subdomain \Omega i is discretized by a node set Xi \subset \Omega i

and a boundary node set Bi \subset \partial \Omega i. The total cardinality of Xi and Bi together is
also ni. The boundary nodes are subdivided into nonintersecting sets Gij = Bi \cap Zj

for j \not = i, and Gi0 = Bi \cap \partial \Omega .
For each i, the vector \bfitu i defines a function \~ui(\bfitx ) on \Omega i. These can be used to

evaluate \phi and \beta from (2.2) anywhere in \Omega i. We define an ni-dimensional vector
function \bfitf i as the concatenation of three vectors:

(2.3) \bfitf i(\bfitu i) =

\left\{     
\phi (\bfitx , \~ui) for all \bfitx \in Xi,

\beta (\bfitx , \~ui) for all \bfitx \in Gi0,

\~ui(\bfitx ) for all \bfitx \in Gij , j = 1, . . . , i - 1, i+ 1, . . . , N.

In addition, we have the linear transfer operator \bfitT i defined by

(2.4) \bfitT i\bfitu =

\left\{     
0 for all \bfitx \in Xi,

0 for all \bfitx \in Gi0,

\~uj(\bfitx ) for all \bfitx \in Gij , j = 1, . . . , i - 1, i+ 1, . . . , N.

Note that while \bfitf i is purely local to subdomain i, the transfer operator \bfitT i operates on
the complete discretization \bfitu , as it interpolates from ``foreign"" subdomains onto the
parts of Bi lying inside \Omega . Finally, we are able to express the complete discretization
of (2.2) through concatenations over the subdomains. Let \bfitu = J\bfitu iK, \bfitf (\bfitu ) = J\bfitf i(\bfitu i)K,
and \bfitT \bfitu = J\bfitT i\bfitu K. Then the discrete form of (2.2) is the nonlinear equation

(2.5) \bfitf (\bfitu ) - \bfitT \bfitu = 0.

For a square discretization, the goal is to solve (2.5), while in the least-squares case,
the goal is to minimize \bfitf (\bfitu ) - \bfitT \bfitu in the (possibly weighted) 2-norm.
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2.2. Newton--Krylov--Schwarz. The standard approach to (2.5) for a large
discretization is to apply an inexact Newton iteration with a Krylov subspace solver
for finding correcting steps from the linearization. Within the Krylov solver we have
a natural setting for applying an AS preconditioner. Specifically, if we have a pro-
posed approximate solution \bfitu , we evaluate the nonlinear residual \bfitr = \bfitf (\bfitu ) - \bfitT \bfitu . We
then (inexactly, perhaps) solve the linearization

\bigl[ 
\bfitf \prime (\bfitu ) - \bfitT \bfitu 

\bigr] 
\bfits =  - \bfitr for the Newton

correction \bfits using a Krylov solver such as GMRES. These iterations are precondi-
tioned by the block diagonal matrix \bfitf \prime (\bfitu ), which is simply the block diagonal of the
subdomain Jacobians \bfitf \prime 

i(\bfitu i). We refer to this method as Newton--Krylov--Schwarz, or
NKS.

Implementation of NKS requires three major elements: the evaluations of \bfitf (\bfitu )
and \bfitT \bfitu for given \bfitu , the application of the Jacobian \bfitf \prime (\bfitu ) to a given vector \bfitv , and the
inversion of \bfitf \prime (\bfitu ) for given data. All of the processes involving \bfitf are embarrassingly
parallel and correspond to standard steps in solving the PDE on the local subdomains.
Each application of the transfer operator \bfitT , however, requires a communication from
each subdomain to its overlapping neighbors, as outlined in Algorithm 2.1. This step
occurs once in evaluating the nonlinear residual and in every GMRES iteration to
apply the Jacobian. In a parallel code, the communication steps could be expected
to be a major factor in the performance of the method.

Algorithm 2.1. Apply transfer operator, \bfitT \bfitu .

Interpret input \bfitu as concatenated J\bfitu iK.
for j = 1, . . . , N (in parallel) do
for all neighboring subdomains i do

Evaluate \~uj at \bfitx \in Gij .
end for

end for

2.3. Two-level scheme. As is well known [8], AS schemes should incorporate
a coarse solution step in order to maintain convergence rates as the number of subdo-
mains increases. The methods described above depend on the subdomain discretiza-
tion sizes ni of the collocation nodes and solution representation, respectively. Now
suppose we decrease the discretization sizes to \^ni and denote the corresponding dis-
cretizations of (2.5) by \^\bfitf (\^\bfitu ) - \^\bfitT \^\bfitu = 0. We can define a restriction operator \bfitR that
maps fine-scale vectors to their coarse counterparts. This operator is block diagonal;
i.e., it can be applied independently within the subdomains. We can also construct a
block diagonal prolongation operator \bfitP for mapping the solution representation from
coarse to fine scales.

We are then able to apply the standard full approximation scheme (FAS) using
the coarsened problem [2]. Specifically, we solve the coarse problem

(2.6) \^\bfitf (\^\bfite +\bfitR \bfitu ) - \^\bfitT \^\bfite  - \^\bfitf (\bfitR \bfitu ) +\bfitR (\bfitf (\bfitu ) - \bfitT \bfitu ) = 0

for the coarse correction \^\bfite and define \bfitc (\bfitu ) = \bfitP \^\bfite as the FAS corrector at the fine
level. The procedure for calculating \bfitc is outlined in Algorithm 2.2.

We also require the action of the Jacobian \partial \bfitc 
\partial \bfitu = \bfitP \partial \^\bfite 

\partial \bfitu on a given vector \bfitv . It is
straightforward to derive from (2.6) that

(2.7)
\bigl[ 
\^\bfitf \prime (\^\bfite +\bfitR \bfitu ) - \^\bfitT 

\bigr] \partial \^\bfite 
\partial \bfitu 

=  - 
\bigl( 
\^\bfitf \prime (\^\bfite +\bfitR \bfitu ) - \^\bfitf \prime (\bfitR \bfitu )

\bigr) 
\bfitR  - \bfitR 

\bigl( 
\bfitf \prime (\bfitu ) - \bfitT 

\bigr) 
.
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Algorithm 2.2. Evaluate FAS correction \bfitc (\bfitu ).

Apply Algorithm 2.1 to compute \bfitT \bfitu .
Compute (in parallel) \^\bfitu = \bfitR \bfitu .

Compute (in parallel) \^\bfitr = \bfitR (\bfitf (\bfitu ) - \bfitT \bfitu ) - \^\bfitf (\^\bfitu ).
Solve (2.6) for \^\bfite .
Compute (in parallel) the prolongation \bfitP \^\bfite .

Algorithm 2.3. Apply Jacobian \bfitc \prime (\bfitu ) for the FAS corrector to a vector \bfitv .

Apply Algorithm 2.2 to compute \^\bfite , \^\bfitu , and the final value of \^\bfitA = \^\bfitf \prime (\^\bfite + \^\bfitu ).
Apply Algorithm 2.1 to compute \bfitT \bfitv .
Set (in parallel) \^\bfitr = \bfitR 

\bigl( 
\bfitf \prime (\bfitu )\bfitv  - \bfitT \bfitv 

\bigr) 
and \^\bfitv = \bfitR \bfitv .

Set (in parallel) \^\bfitb = \^\bfitA \^\bfitv  - \^\bfitf \prime (\^\bfitu )\^\bfitv + \^\bfitr .

Solve the linear system ( \^\bfitA  - \^\bfitT )\^\bfity =  - \^\bfitb for \^\bfity .
Compute (in parallel) \bfitP \^\bfity .

Note that the matrix \^\bfitf \prime (\^\bfite +\bfitR \bfitu ) should be available at no extra cost from the end
of the Newton solution of (2.6). Algorithm 2.3 describes the corresponding algorithm
for computing the application of \bfitc \prime (\bfitu ) to any vector \bfitv . Even though \bfitc \prime is of the size
of the fine discretization, the computation requires only coarse-dimension dense linear
algebra.

Finally, we describe how to combine coarsening with the preconditioned fine scale
into a two-level algorithm. If we were to alternate coarse and fine corrections in the
classical fixed-point form,

\bfitu \dagger = \bfitu + \bfitc (\bfitu ),

\bfitu new = \bfitu \dagger + \bfitf (\bfitu \dagger ) - \bfitT \bfitu \dagger ,

then we are effectively seeking a root of

(2.8) \bfith (\bfitu ) := \bfitc (\bfitu ) + (\bfitf  - \bfitT )(\bfitu + \bfitc (\bfitu )).

The Jacobian of the combined map is straightforwardly

(2.9) \bfith \prime (\bfitu ) = \bfitc \prime (\bfitu ) + (\bfitf \prime  - \bfitT )(\bfitu + \bfitc (\bfitu )) \cdot (\bfitI + \bfitc \prime (\bfitu )).

Thus, the action of \bfith \prime on a vector can be calculated using the algorithms for \bfitc \prime , \bfitf \prime ,
and \bfitT .

3. Preconditioned nonlinear iterations. As shown in section 2.2, the inner
Krylov iterations of the NKS method are governed by the preconditioned Jacobian
\bfitI  - [\bfitf \prime (\bfitv )] - 1\bfitT . Following the observation of Cai and Keyes [4], we next derive a
method that applies Krylov iterations to the same matrix, but arising as the natural
result of preconditioning the nonlinear problem. Specifically, we precondition (2.5)
by finding a root of the nonlinear operator

(3.1) \bfitg (\bfitu ) := \bfitu  - \bfitf  - 1(\bfitT \bfitu ).

Evaluation of \bfitg is feasible, because of the block diagonal (that is, fully subdomain-
local) action of the nonlinear \bfitf . Since we are therefore applying the Schwarz ansatz
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even before linearizing the problem, we refer to the resulting method as Schwarz--
Newton--Krylov (SNK).

We have several motivations for a method based on (3.1). First, since the trans-
fer operator \bfitT has nonzero rows only at interface points, the nonlinear problem is a
low-rank perturbation of the identity operator (see (3.3)), which may make Newton
stepping much more effective than in the original nonlinear form. Second, the in-
version of \bfitf means solving independent nonlinear problems on the subdomains with
no communication, which well exploits parallelism. Third, the same structure means
that problems with relatively small highly active regions could isolate the need to
solve a nonlinear problem to such regions, rather than having it be part of a fully
coupled global nonlinear problem.

An algorithm for evaluating \bfitg is given in Algorithm 3.1. It requires one communi-
cation between subdomains to transfer interface data, followed by solving (in parallel
if desired) the nonlinear subdomain problems \bfitf i defined in (2.3). Note that the local
problem in \Omega i is a discretization of the PDE with zero boundary data on the true
boundary \Gamma i0 and values transferred from the foreign subdomains on the interfaces.

Algorithm 3.1. Evaluate SNK residual \bfitg (\bfitu ).

Apply Algorithm 2.1 to compute \bfitT \bfitu .
for i = 1, . . . , N (in parallel) do
Solve \bfitf i(\bfitu i  - \bfitz i) = \bfitT i\bfitu for \bfitz i.

end for
Return J\bfitz iK.

Using the notation of Algorithm 3.1, we have that

(3.2) \bfitf \prime 
i(\bfitu i  - \bfitz i)

\biggl[ 
\bfitI  - \partial \bfitz i

\partial \bfitu 

\biggr] 
= \bfitT i,

which implies that applying [\partial \bfitz i/\partial \bfitu ] to a vector requires a single linear solve on a
subdomain, with a matrix that is presumably already available at the end of the local
Newton iteration used to compute \bfitg . The process for applying \bfitg \prime (\bfitu ) to a vector is
outlined in Algorithm 3.2.

Algorithm 3.2. Apply Jacobian \bfitg \prime (\bfitu ) to vector \bfitv for the SNK problem.

Apply Algorithm 2.1 to compute \bfitT \bfitv .
for i = 1, . . . , N (in parallel) do
Solve [\bfitf \prime 

i(\bfitu i  - \bfitz i)]\bfity i = \bfitT i\bfitv for \bfity i.
end for
Return J\bfitv i  - \bfity iK.

Equation (3.2) can be rearranged to show that the Jacobian of the preconditioned
nonlinear problem is

(3.3)
\partial \bfitz 

\partial \bfitu 
= \bfitI  - 

\bigl[ 
\bfitf \prime (\bfitu  - \bfitz )

\bigr]  - 1
\bfitT .

Because the transfer operator \bfitT has nonzero rows only at interface points, this con-
firms that the Jacobian of the preconditioned nonlinear problem is a low-rank pertur-
bation of the identity. Moreover, if \bfitT is based on stable interpolation of values, it has
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norm close to 1. Thus, Kantorovich or other standard convergence theory for New-
ton's method [6] may therefore suggest improved local convergence rates and larger
basins of attraction. We have not yet pursued this analysis.

3.1. Two-level scheme. The SNK method can be expected to require coarse
correction steps to cope with a growing number of subdomains. An obvious approach
to incorporating a coarse-grid correction step is to apply FAS directly, i.e., using the
analogue of (2.6) with fine \bfitg and coarse \^\bfitg . However, doing so means inverting \^\bfitg ,
which introduces another layer of iteration in the overall process.

We have found that it is simpler and successful to apply the FAS correction in
the form of the original NKS method, as given in section 2.3. All we need to do is
replace \bfitf (\bfitu ) - \bfitT \bfitu and \bfitf \prime  - \bfitT in (2.8) and (2.9) by \bfitg and \bfitg \prime , respectively.

4. Numerical experiments. For all experiments, we compared three methods:
NKS, SNK, and the two-level SNK2, as coded by us in MATLAB. The local nonlinear
problems for SNK, and the coarse global problems in SNK2, were solved using fsolve

from the Optimization Toolbox. Each solver used an inexact Newton method as the
outer iteration, continued until the residual was less than 10 - 10 relative to the initial
residual. For the inner iterations we used gmres in MATLAB to solve for the Newton
step sk such that

(4.1) \| F (xk) + F \prime (xk)sk\| \leq \eta k\| F (xk)\| ,

where \eta 0 = 10 - 4 and

(4.2) \eta k = 10 - 4

\biggl( 
\| F (xk)\| 

\| F (xk - 1)\| 

\biggr) 2

.

Given certain conditions on F (x), if the initial solution is close enough to the true
solution, then this set of tolerances will yield a sequence with near q-2 convergence
[9].

4.1. Regularized driven cavity flow. The first example is a regularized form
of the lid-driven cavity flow problem [11], where we replace the boundary conditions
with infinitely smooth ones. Using the velocity-vorticity formulation, in terms of the
velocity u, v and vorticity \omega on \Omega = [0, 1]2 we have the nondimensionalized equations

(4.3)

 - \Delta u - \partial \omega 

\partial y
= 0,

 - \Delta v +
\partial \omega 

\partial x
= 0,

 - 1

Re
\Delta \omega + u

\partial \omega 

\partial x
+ v

\partial \omega 

\partial y
= 0,

where Re is the Reynolds number. On the boundary \partial \Omega we apply

(4.4)

u =

\left\{   exp

\biggl( 
 - ( y - 1

0.1 )
2

1 - ( y - 1
0.1 )

2

\biggr) 
, y > 0.9,

0, y \leq 0.9,

v = 0,

\omega =  - \partial u

\partial y
+

\partial v

\partial x
,
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(a) Nonlinear residuals with Re = 100
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(b) Nonlinear residuals with Re = 1000

Fig. 1. Nonlinear residuals, normalized by the residual of the initial guess, of the NKS, SNK,
and SNK2 solvers on the regularized cavity flow problem (4.3)--(4.4). The area of each marker is
proportional to the number of inner GMRES iterations taken to meet the inexact Newton criterion.

being similar to the boundary conditions in [12].
We divided \Omega into 16 overlapping patches of equal size (i.e., a 4 by 4 patch

structure). Each subdomain was discretized by a second-kind Chebyshev grid of
length 33 in each dimension. For the initial guess to the outer solver iterations, we
extended the boundary conditions (4.4) to all values of x in the square \Omega .

The convergence of the three solvers is shown for Re = 100, and SNK and NKS
for Re = 1000 in Figure 1. All three methods converge for Re = 100. The number of
GMRES iterations per nonlinear iteration are similar for the NKS and SNK methods;
this is to be expected, since the linear system used to solve the Newton step is similar
in both methods. We do, however, see a dramatic reduction in the number of GMRES
iterations with the two-level SNK method.

It is well worth noting that the computational time for each outer iteration varies
greatly between solvers. The NKS residual requires only evaluating the discretized
PDE and is thus is a good deal faster per iteration than the SNK solvers, which require
solving the local nonlinear problems. In addition, SNK2 must solve a global coarse
problem in each outer iteration, but this added relatively little computing time.

For the higher Reynolds number Re = 1000, we find that while SNK still con-
verges, NKS does not, similar to what was reported in [4]. We also found that the
coarse-level solver in SNK2 had trouble converging.

4.2. Burgers's equation. The second test problem is Burgers's equation,

(4.5) \nu \Delta u - u \cdot \nabla u = 0,

on \Omega = [ - 1, 1]2, with Dirichlet boundary condition

(4.6) u = arctan

\biggl( 
cos

\biggl( 
3\pi 

16

\biggr) 
x+ sin

\biggl( 
3\pi 

16

\biggr) 
y

\biggr) 
.

This PDE was solved using a subdomain structure adapted to the function

exp

\biggl( 
1

1 - x - 20
+

1

1 - y - 20

\biggr) 
using the methods in [1] in order to help capture the boundary layers, as shown in
Figure 2. For the initial guess of the outer iterations, the boundary condition (4.6)
was extended throughout \Omega .
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Fig. 2. Subdomains for the Burgers experiments, found by adapting to the function
exp( - x20/(1 - x20)) exp( - y20/(1 - y20)) in order to increase resolution in the boundary layer.

Convergence histories for (4.5)--(4.6) for 1/\nu = 400, 800, 1000, 1500 are given in
Figure 3. We observe again that the SNK and SNK2 solvers seem quite insensitive to
the diffusion strength, while the number of outer iterations in NKS increases mildly as
diffusion wanes. Furthermore, SNK2 converges in about half as many outer iterations
as SNK.

5. Discussion. We have described a framework for overlapping domain decom-
position in which overlap regions are discretized independently by the local subdo-
mains, even in the formulation of the global problem. Communication between sub-
domains occurs only via interpolation of values to interface points. This formulation
makes it straightforward to apply high-order or spectral discretization methods in the
subdomains and to adaptively refine them.

The technique may be applied to precondition a linearized PDE, but it may also be
used to precondition the nonlinear problem before linearization to get what we call the
Schwarz--Newton--Krylov (SNK) technique. In doing so, one gets the same benefit of
faster Krylov inner convergence, but the resulting nonlinear problem is demonstrably
easier to solve in terms of outer iterations. In some cases, the convergence becomes
more robust with respect to problem parameters, though there is no reason to believe
that this will always be true.

We have demonstrated that the SNK method can easily be part of a two-level FAS
in order to keep iteration counts from growing as the number of subdomains grows.
The coarse level is simply a coarsening on each subdomain, so that restriction and
prolongation steps can be done simply and in parallel. Indeed, the situation should
make a fully multilevel implementation straightforward, as the multilevel coarsenings
and refinements can all be done within subdomains.

The most time-consuming part of the SNK algorithm is expected to be typically
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(a) Nonlinear residuals with \nu = 1/400
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(b) Nonlinear residuals with \nu = 1/800
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(c) Nonlinear residuals with \nu = 1/1000
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(d) Nonlinear residuals with \nu = 1/1500

Fig. 3. Nonlinear residuals, normalized by the residual of the initial guess, of the NKS, SNK,
and SNK2 methods to solve (4.5)--(4.6). The area of each marker is proportional to the number of
inner GMRES iterations taken to meet the inexact Newton criterion.

in the solution of nonlinear PDE problems within each subdomain using given bound-
ary data. These compute-intensive tasks require no communication and are therefore
efficient to parallelize. By contrast, each inner Krylov iteration (i.e., Jacobian appli-
cation) of both SNK and linearly preconditioned NKS requires a communication of
interface data between overlapping subdomains, which appears to generate a more
communication-bound form of parallelism. An additional feature of the SNK ap-
proach, mentioned also in [4], is that subdomains of low solution activity can be
expected to be found relatively quickly. We observed this to be the case in the cavity
flow problem of section 4.1, where local solutions in regions of low activity were some-
times three to four times faster than those in regions with steep solution gradients.
This presents a natural way to limit the spatial scope of difficult nonlinear problems,
though it also raises questions for load balancing in a parallel environment.

Finally, we remark that an important extension in [1] is to use least-squares
approximation rather than interpolation to incorporate nonrectangular (sub)domains.
We have been able to write a least-squares (as opposed to collocation) generalization
of SNK and test it in one dimension. We hope to make it the subject of future work.

Codes for the steady PDE examples of the paper are available online from https:
//github.com/tobydriscoll/schwarz-newton-krylov. The time-dependent example is
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not included, since it relies on a light revision of the proprietary ode15s code in
MATLAB.
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