

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. A251--A265

AN ADAPTIVE PARTITION OF UNITY METHOD FOR
CHEBYSHEV POLYNOMIAL INTERPOLATION\ast

KEVIN W. AITON\dagger AND TOBIN A. DRISCOLL\dagger

Abstract. For a function that is analytic on and around an interval, Chebyshev polynomial
interpolation provides spectral convergence. However, if the function has a singularity close to the
interval, the rate of convergence is near one. In these cases splitting the interval and using piecewise
interpolation can accelerate convergence. Chebfun includes a splitting mode that finds an optimal
splitting through recursive bisection, but the result has no global smoothness unless conditions are
imposed explicitly at the breakpoints. An alternative is to split the domain into overlapping intervals
and use an infinitely smooth partition of unity to blend the local Chebyshev interpolants. A simple
divide-and-conquer algorithm similar to Chebfun's splitting mode can be used to find an overlapping
splitting adapted to features of the function. The algorithm implicitly constructs the partition of
unity over the subdomains. This technique is applied to explicitly given functions as well as to the
solutions of singularly perturbed boundary-value problems.

Key words. partition of unity, Chebyshev interpolation, Chebfun, overlapping domain decom-
position

AMS subject classifications. 65L11, 65D05, 65D25

DOI. 10.1137/17M112052X

1. Introduction. Chebyshev polynomial interpolants provide powerful approx-
imation properties, both in theory and as implemented in practice by the Chebfun
software system [2]. Chebfun uses spectral collocation to provide very accurate auto-
matic solutions to differential equations [4]. The method is not fully adaptive, though,
since the refinement is limited to the degree of the global interpolant.

Chebfun includes a splitting method that creates piecewise polynomial approx-
imations [10]. When splitting is enabled, if a Chebyshev interpolant is unable to
represent the function accurately at a specified maximum degree on an interval, the
interval is bisected; this process is recursively repeated on the subintervals. After-
wards adjacent subintervals are merged if the new interval allows for a Chebyshev
approximation with lower degree. In effect, the method does a binary search for a
good splitting location. In [6] it was shown that the splitting locations are roughly
optimal based on the singularity structure of the function in the complex plane.

A drawback of Chebfun's splitting approach is that the resulting representation
does not ensure anything more than C0 continuity. Differentiation of the Chebyshev
interpolation polynomial of degree n has norm O(n2), so a jump in the derivative
develops across a splitting point and becomes more pronounced for higher derivatives
and larger n. In order to solve a boundary-value problem (BVP), Chebfun imposes
explicit continuity conditions on the solution to augment the discrete problem. This
solution works well in 1D but becomes cumbersome in higher dimensions, particularly
if refinements are made nonconformingly.

In this paper we explore the use of Chebyshev interpolants on overlapping do-

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section March 15,
2017; accepted for publication (in revised form) November 6, 2017; published electronically January
30, 2018.

http://www.siam.org/journals/sisc/40-1/M112052.html
Funding: This research was supported by National Science Foundation grant DMS-1412085.

\dagger Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (kaiton@udel.
edu, driscoll@udel.edu).

A251

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/40-1/M112052.html
mailto:kaiton@udel.edu
mailto:kaiton@udel.edu
mailto:driscoll@udel.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A252 KEVIN W. AITON AND TOBIN A. DRISCOLL

mains combined using a partition of unity. The resulting approximation has the same
accuracy as the individual piecewise interpolants. We use compactly supported weight
functions that are infinitely differentiable, so the resulting combined interpolant is also
infinitely smooth (though not analytic). We also show that the accuracy of the deriva-
tive can be bounded by \Theta (\delta - 2) for an overlap amount \delta , revealing an explicit tradeoff
between efficiency (smaller overlap and more like Chebfun splitting) and global ac-
curacy of the derivative. Because the global approximation is smooth, there are no
matching conditions needed to solve a BVP, and there are standard preconditioners
available that should aid with iterative methods for large discretizations. For exam-
ple, since we split the interval into overlapping domains we could use the restricted
additive Schwarz preconditioner [3].

We describe a recursive, adaptive algorithm for creating and applying a partition
of unity, modeled on the recursive splitting in Chebfun but merging adjacent sub-
domains aggressively in order to keep the total node count low. Even though each
node of the recursion only combines two adjacent subdomains, we show that the
global approximant is also a partition of unity. We demonstrate that the adaptive
refinement is able to resolve highly localized features of an explicitly given function
and of a solution to a singularly perturbed BVP.

The use of a partition of unity in our approximation affords us some flexibility:
we are able to create approximations which are both efficient and infinitely smooth
without matching. Partition of unity schemes have been widely used for interpolation
[7, 9, 13] and solving PDEs [8, 12]. In section 3 we introduce the partition of unity
method, and we discuss the convergence of the method for a simple split on the interval
[- 1, 1] in section 4. We describe our adaptive algorithm in section 5. In section 6
we explain how to apply our method to solve BVPs on an interval and perform some
experiments with singularly perturbed problems.

2. Chebyshev interpolation. We use Chebyshev interpolants for our partition
of unity method because they enjoy spectral convergence. Suppose that f(x) is ana-
lytic inside a Bernstein ellipse E\rho (an ellipse with foci \pm 1 and semimajor axis \rho > 1).
We then have Theorem 6 from [15].

Theorem 1. Suppose f(z) is analytic on and inside the Bernstein ellipse E\rho . Let
pn be the polynomial that interpolates f(z) at n + 1 Chebyshev points of the second
kind. Then there exists a constant C > 0 such that for all n > 0,

\| f(x) - pn(x)\| \infty \leq C\rho - n.

If f(x) is Lipschitz continuous on [- 1, 1], then

(1) f(x) =

\infty \sum
k=0

akTk(x), ak =
2

\pi

\int 1

 - 1

f(x)Tk(x)\surd
1 - x2

dx,

where Tk denotes the degree k Chebyshev polynomial (and for a0 we multiply by 1
\pi

instead of 2
\pi). Furthermore if pn(x) is the nth degree Chebyshev interpolant, then

(2) f(x) - pn(x) =

\infty \sum
k=n+1

ak (Tk(x) - Tm(x)) ,

where

(3) m = [(k + n - 1)(mod 2n) - (n - 1)] ,

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A253

implying we can determine the accuracy of the interpolant pn(x) by inspecting the
Chebyshev coefficients [16]. Chebfun's standardChop method determines the mini-
mum required degree by searching for a plateau of low magnitude coefficients [1]. For
example, Figure 1 shows the first 128 coefficients of f(x) = exp (sin (\pi x)). We see
that all coefficients after the first 46 have magnitude less than 10 - 15. In this case,
Chebfun determines the ideal degree to be 50.

0 20 40 60 80 100 120 140

Degree of Chebyshev polynomial

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

M
a
g
n
it
u

d
e
 o

f
c
o
e
ff
ic

ie
n
t

Chebyshev coefficients

Fig. 1. Chebyshev coefficients for f(x) = exp (sin (\pi x)).

3. Partition of unity formalism. Suppose we have an overlapping covering
\{ \Omega k\} Nk=1 on a bounded region \Omega . A partition of unity (PU) is a collection of real
valued functions \{ wk(x)\} Nk=1 such that

\bullet wk(x) has support within \Omega k,
\bullet each wk(x) is nonnegative,

\bullet for all x \in \Omega ,
\sum N

k=1 wk(x) = 1.
The functions \{ wk(x)\} Nk=1 are called the weights of the partition. Suppose now that
\Omega = [- 1, 1] and each \Omega k is an interval. We can use the partition of unity \{ wk(x)\} Nk=1

to construct an approximating function. Suppose that for m \geq 0 we have a function
f \in Cm([- 1, 1]), each weight wk(x) \in Cm([- 1, 1]), and for each patch \Omega k we have an
approximation sk(x) of f(x). Then the function

(4) s(x) =

N\sum
k=1

wk(x)sk(x)

can be used to approximate f(x) and its derivatives [17].

Theorem 2. Suppose f \in Cm([- 1, 1]) and for each patch \Omega k we have a function
sk(x) such that

\| f (\alpha)(x) - s
(\alpha)
k (x)\| L\infty (\Omega k) \leq \varepsilon k(\alpha)

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A254 KEVIN W. AITON AND TOBIN A. DRISCOLL

for \alpha \leq m. Thus for j \leq m, if s(x) is the approximation (4), then

(5)
\bigm\| \bigm\| \bigm\| f (j)(x) - s(j)(x)

\bigm\| \bigm\| \bigm\|
L\infty (\Omega k)

\leq
N\sum

k=1

j\sum
i=0

\biggl(
j

i

\biggr) \bigm\| \bigm\| \bigm\| w(j - i)
k (x)

\bigm\| \bigm\| \bigm\|
L\infty (\Omega k)

\epsilon k(i).

Proof. Since
\sum

k=1 wk(x) = 1,
\sum

k=1 wk(x)f(x) = f(x). Thus

(6)

dj

dxj
f(x) - dj

dxj

N\sum
k=1

wk(x)sk(x) =
dj

dxj

N\sum
k=1

wk(x)(f(x) - sk(x))

=

N\sum
k=1

j\sum
i=0

\biggl(
j

i

\biggr)
w

(j - i)
k (x)

\Bigl(
f (i)(x) - s

(i)
k (x)

\Bigr)
.

The result follows from here by the triangle inequality.

4. Convergence analysis. In this section we consider a single interval parti-
tioned into two overlapping parts, i.e., [- 1, t],[- t, 1], where t is the overlap parameter
such that 0 < t < 1. For the weights, we use Shepard's method [13] based on the
compactly supported, infinitely differentiable shape function

\psi (x) =

\Biggl\{
exp

\Bigl(
1 - 1

1 - x2

\Bigr)
, | x| < 1,

0, | x| \geq 1.
(7)

We define support functions

\psi \ell (x) = \psi

\biggl(
x+ 1

1 + t

\biggr)
and \psi r(x) = \psi

\biggl(
x - 1

1 + t

\biggr)
(8)

to construct the PU weight functions

w\ell (x) =
\psi \ell (x)

\psi \ell (x) + \psi r(x)
and wr(x) =

\psi r(x)

\psi \ell (x) + \psi r(x)
,(9)

where w\ell (x), wr(x) have support on the left and right intervals, respectively.
Suppose that s\ell (x), sr(x) approximate f(x) on [- 1, t], [- t, 1], respectively, and

are both infinitely smooth. Let

(10) s(x) = w\ell (x)s\ell (x) + wr(x)sr(x),

where s(x) is the PU approximation. Following Theorem 2 we have for x \in [- 1, 1]
that

(11)
| f(x) - s(x)| = | w\ell (x) (f(x) - s\ell (x)) + wr(x) (f(x) - sr(x))|

\leq w\ell (x) | f(x) - s\ell (x)| + wr(x) | f(x) - sr(x)| .

We conclude that

\| f(x) - s(x)\| L\infty [- 1,1] \leq max
\Bigl(
\| f(x) - s\ell (x)\| L\infty [- 1,t] , \| f(x) - sr(x)\| L\infty [- t,1]

\Bigr)
.

(12)

This implies that the partition of unity method (PUM) preserves the accuracy of
its local approximants. We also have that s(x) is infinitely smooth. For the first
derivative we have

(13)
| f \prime (x) - s\prime (x)| \leq | w\ell (x) (f

\prime (x) - s\prime \ell (x))| + | wr(x) (f
\prime (x) - s\prime r(x))|

+ | w\prime
\ell (x) (f(x) - s\ell (x))| + | w\prime

r(x) (f(x) - sr(x))| ,

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A255

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2. Plot of the PU approximation with overlap parameter t = 0.1 for f(x) = arctan (x/0.1),
where the thick lines represent the domains of the left and right approximation. Here \| f(x) -
s(x)\| L\infty [- 1,1] = 2.4e-15 and \| f \prime (x) - s\prime (x)\| L\infty [- 1,1] = 1.7e-13.

giving us
(14)

\| f \prime (x) - s\prime (x)\| L\infty [- 1,1] \leq max
\Bigl(
\| f \prime (x) - s\prime \ell (x)\| L\infty [- 1,t] , \| f

\prime (x) - s\prime r(x)\| L\infty [- t,1]

\Bigr)
+ \| w\prime

\ell (x)\| L\infty [- t,t] \| f(x) - s\ell (x)\| L\infty [- t,t]

+ \| w\prime
r(x)\| L\infty [- t,t] \| f(x) - sr(x)\| L\infty [- t,t] ,

since the derivatives of the weights have support only on the overlap. For t \ll 1,
the weights steepen to become nearly step functions. This causes the derivatives of
the weights to be large in magnitude, resulting in an increase in the error for the
derivative.

Since w\prime
\ell (x) = - w\prime

r(x), from (14) we can infer
(15)

\| f \prime (x) - s\prime (x)\| L\infty [- 1,1] \leq max
\Bigl(
\| f \prime (x) - s\prime \ell (x)\| L\infty [- 1,t] , \| f

\prime (x) - s\prime r(x)\| L\infty [- t,1]

\Bigr)
+ \| w\prime

\ell (x)\| L\infty [- t,t] max
\Bigl(
\| f(x) - s\ell (x)\| L\infty [- t,t] , \| f(x) - sr(x)\| L\infty [- t,t]

\Bigr)
.

We have that x = 0 is a critical point of w\prime
\ell (x), and for t < 0.4 it can be shown that

the maximum of | w\prime
\ell (x)| occurs at x = 0. Since

(16) w\prime
\ell (0) = - (1 + t)2

t2(2 + t)2
,

we can infer that \| w\prime
\ell (x)\| L\infty [- t,t] = \Theta (t - 2) as t \rightarrow 0. The norm of the Chebyshev

differentiation operator is \Theta (n2) (for n nodes), implying that the two terms on the
right-hand side of (15) are balanced if t - 2 = \Theta (n2), or equivalently t = \Theta

\bigl(
1
n

\bigr)
. A

simple example of a split can be seen in Figure 2.

5. Recursive algorithm. In order to allow for adaptation to specific features
of f(x), we next describe a recursive bisection algorithm that works similarly to

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A256 KEVIN W. AITON AND TOBIN A. DRISCOLL

Chebfun's splitting algorithm [6] and to that of [14]. Suppose we want to construct a
PU approximation s[a,b](x) on the interval [a, b] using Chebyshev interpolants on the
patches. If f(x) can be resolved by a Chebyshev interpolant s(x) of length nmax on
[a, b], then

s[a,b](x) = s(x).(17)

Otherwise we split the interval into two overlapping domains and blend the results as
in (10):

s[a,b](x) = w\ell (x)s[a,a+\delta](x) + wr(x)s[b - \delta ,b](x),(18)

where w\ell , wr are the PU weight functions defined in (9) (but defined for [a, b], and
\delta = (1 + t)

\bigl(
a+b
2

\bigr)
).

We define a binary tree T with each node \nu having the following properties:
\bullet interval(\nu) := the domain of the patch.
\bullet c0(\nu),c1(\nu) := respective left and right subtrees of \nu (if split).
\bullet w0(\nu),w1(\nu) := respective left and right weights of \nu (if split).
\bullet interpolant(\nu) := Chebyshev interpolant on interval(\nu) if \nu is a leaf.
\bullet values(\nu) := values of the function we are approximating at the Chebyshev
points of \nu .

We define root(T) as the root node of T . In Algorithm 1 we formally describe how
we refine our splitting; the merge method is described in section 5.1.

We first initialize the tree T with a single node \nu where interval(\nu) = [a, b].
Next we repeatedly call the splitleaves method until each leaf of T has a Chebyshev
interpolant that can resolve f(x) with degree less than nmax, as seen in Algorithm 2.
For each leaf \nu of T , sample(T ,f(x)) sets values(\nu) using f(x). For a leaf \nu , we
determine if a Chebyshev interpolant can resolve f(x) using Chebfun's standardChop
method with values(\nu) (as described in section 2). Using T we can evaluate s[a,b](x)
recursively as demonstrated in Algorithm 3.

As a simple example, we approximate the function f(x) = arctan
\bigl(
x - 0.25
0.001

\bigr)
with

nmax = 128. In order to resolve to machine precision, a global Chebyshev interpolant
on the interval [- 1, 1] requires 25743 nodes, while our method requires 523. Chebfun
with nonoverlapping splitting requires 381 nodes. Overlapping splittings will typically
require more total nodes while offering the benefit of global smoothness. The result
can be seen in Figure 3.

We can deduce from (12) that s[a,b](x) will approximate f(x). Moreover, our
method implicitly creates a PU on the leaves of the tree through the product of the
weights at each level.

Theorem 3. Let an approximation s[a,b](x) be as in (10). Then the tree that
represents s[a,b](x) implicitly defines a PU \{ wk(x)\} Mk=1, where wk(x) has compact
support over the kth leaf.

Proof. Suppose that on the domain [a, b] we have PUs \{ w\ell k(x)\} M\ell

k=1, \{ wrk(x)\} Mr

k=1

for the leaves of the left and right child, respectively. We claim that

(19) \{ w\ell (x)w\ell k(x)\} M\ell

k=1 \cup \{ wr(x)wrk(x)\} Mr

k=1

forms a PU over the leaves of the tree. We first observe that w\ell (x)w\ell k(x) will have
support in supp (w1k(x)), the domain of the respective leaf. This is similarly true for
wr(x)wrk(x).

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A257

Algorithm 1 splitleaves(\nu ,nmax,t)

if \nu is a leaf and f(x) cannot be resolved by interpolant(\nu) then
Define new nodes \nu 0, \nu 1.
[a, b] := interval(\nu)
\delta := b - a

2 (1 + t)
interval(\nu 0) := [a, a+ \delta]
interval(\nu 1) := [b - \delta , b]
for k = 0, 1 do
ck(\nu) := \nu k

end for
w0(\nu),w1(\nu) := weights in (9) defined for [a, a+ \delta],[b - \delta , b]

else if \nu is a leaf and f(x) can be resolved by a Chebyshev interpolant with degree
less than nmax then
interpolant(\nu) := minimum degree interpolant f(x) can be resolved by

as determined by Chebfun
else
for k = 0, 1 do
splitleaves(ck(\nu),nmax,t)

end for
merge(\nu ,nmax)

end if

Algorithm 2 T = refine(nmax,t,f(x))

Define T as a tree with a single node.
while T has unresolved leaves do
sample(T ,f(x))
splitleaves(root(T),nmax,t)

end while

Algorithm 3 val = eval(\nu ,x)

if \nu is a leaf then
p := interpolant(\nu)
val := p(x)

else
val0, val1 := 0
w0 := w0(\nu)
w1 := w1(\nu)
for k = 0, 1 do
if x \in interval(ck(\nu)) then
valk := eval(ck(\nu),x)

end if
end for
val := w0(x)val0 + w1(x)val1

end ifD
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A258 KEVIN W. AITON AND TOBIN A. DRISCOLL

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3. Plot of the PU approximation with overlap parameter t = 0.1 for f(x) =
arctan ((x - 0.25)/0.001), where the solid horizontal lines represent the patches.

Next suppose that x \in sup (w\ell (x))\cap sup (wr(x))
C
. Then w\ell (x) = 1 and wr(x) =

0, so

(20)

M\ell \sum
k=1

w\ell (x)w\ell k(x) +

Mr\sum
k=1

wr(x)wrk(x) =

M\ell \sum
k=1

w\ell k(x) = 1,

since \{ w\ell k(x)\} M\ell

k=1 is a PU. This is similarly true if x \in sup (w\ell (x))
C \cap sup (wr(x)).

Finally if x \in sup (w\ell (x)) \cap sup (wr(x)), then

(21)

M\ell \sum
k=1

w\ell (x)w\ell k(x) +

Mr\sum
k=1

wr(x)wrk(x) = w\ell (x)

M\ell \sum
k=1

w\ell k(x) + wr(x)

Mr\sum
k=1

wrk(x)

= w\ell (x) + wr(x) = 1.

Thus by induction we have that the product of weights through the binary tree for
(10) implicitly creates a PU over the leaves.

5.1. Merging. As we create the tree we opportunistically merge leaves for
greater efficiency. If a particular location in the interval requires a great deal of
refinement, the recursive splitting essentially performs a binary search for that loca-
tion (as was noted about Chebfun splitting in [6]). The intermediate splits are not
necessarily aiding with resolving the function; they are there just to keep the binary
tree full. In Chebfun the recursive splitting phase is followed by a merging phase that
discards counterproductive splits. We describe a similar merging operation here, but
we allow these merges to take place whenever a leaf splits while its sibling does not,
in order to keep the number of leaves from unnecessarily growing exponentially.

In Figure 4 we illustrate how we merge leaves; the interval [a, b1] is merged with
[a2, b21]. Here we decide to merge if f(x) can be resolved with an interpolant with
degree less than nmax on the interval [a, b21]. For the new tree we define the left

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A259

[a, b]
s[a,b](x)

[a, b1]
s[a,b1](x)
w\ell 1(x)

[a2, b]
s[a2,b](x)
wr1(x)

[a2, b21]
s[a2,b21](x)
w\ell 2(x)

[a22, b]
s[a22,b](x)
wr2(x)

(a) Tree before merging. Here a2 < b1 and
a22 < b21.

[a, b]
s[a,b](x)

[a, b21]
s[a,b21](x)
\^w\ell 1(x)

[a22, b]
s[a22,b](x)
\^wr1(x)

(b) Tree after merging.

Fig. 4. An example of how leaves are merged, where each node is labeled with its domain, PU
approximation, and weight.

weight \^w\ell 1(x) in Figure 4 as

\^w\ell 1(x) =

\Biggl\{
1, x < a22,

w\ell 2(x) otherwise.
(22)

Since w\ell 2(x) = 1 for x < a22, \^w\ell 1(x) is smooth. For the right weight we use \^wr1(x) =
wr2(x); these new weights form a PU. The PU approximation

\^s(x) = w\ell 1(x)s[a,b1](x) + wr1(x)s[a2,b21](x)(23)

can be used to approximate f(x) on [a, b21] since f(x) is resolved at the leaves. In
this case s[a,b21](x) is computed from sampling \^s(x). If the degree of s[a,b21](x) after
Chebfun's chopping is less than nmax, we decide to merge. We explain in more detail
the merging in Algorithm 4; here extend(w(x),[a, b]) piecewise extends the weight w(x)
in [a, b] as in (22). We show the results for merging in Figure 5 with f(x) = 1

x - 1.001 .

5.2. Differentiation matrices. Next we demonstrate how to construct a first
derivative matrix; higher derivative matrices can be similarly constructed. Suppose
we have constructed a splitting represented by the tree T . For each node \nu of the
tree, we add the following methods:

\bullet points(\nu) := provides the Chebyshev points of the leaves of \nu .
\bullet leafpoints(\nu) := provides the Chebyshev points of T in interval(\nu), i.e.,

points(root(T)) \cap interval(\nu).
\bullet pointindex(\nu) := gives the index of points(\nu) with respect to the points of
the parent of \nu (if \nu is a child).

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A260 KEVIN W. AITON AND TOBIN A. DRISCOLL

Algorithm 4 merge(\nu ,nmax)

if c0(\nu) and c0(c1(\nu)) (child and grandchild of \nu) are leaves and both of the intervals
of the leaves can be resolved on then
Define a new leaf \nu 0.
p0(x) := interpolant(c0(\nu))
p1(x) := interpolant(c1(c0(\nu)))
w0(x) := w0(\nu)
w1(x) := w1(\nu)
\^s(x) := w0(x)p0(x) + w1(x)p1(x)
if \^s(x) can be resolved by a Chebyshev interpolant p(x) with degree less than
nmax then

interval(\nu 0) := interval(c0(\nu))\cup interval(c0(c1(\nu)))
interpolant(\nu 0) := p(x)
points(\nu 0) := Chebyshev grid of length deg(p(x)) on [a0, b1]
\^w0(x) := w0(c1(\nu))
\^w1(x) := w1(c1(\nu))
w0(\nu) := extend(\^w0(x),interval(\nu 0))
w1(\nu) := \^w1(x)
c0(\nu) := \nu 0
c1(\nu) := c1(c1(\nu))

end if
else if c1(\nu) is a leaf and c1(c0(\nu)) is a leaf (and exists) then
inv(merge(\nu)) (i.e., apply the algorithm, except swap 0 and 1)

end if

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

(a) Tree before merging.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

(b) Tree after merging.

Fig. 5. An example of how the PUM with t = 0.08, n\itm \ita \itx = 128 resolves f(x) = 1
x - 1.0005

(a) without merging and (b) after merging.

\bullet leafpointindex(\nu) := gives the index of leafpoints(\nu) with respect to the leaf-
points of the parent of \nu (if \nu is a child).

Let [\alpha , \beta] = interval(\nu). We want to construct matrices M,D such that

(24)

M f(x)| points(\nu) = s[\alpha ,\beta](x)
\bigm| \bigm|
leafpoints(\nu)

,

D f(x)| points(\nu) =
d

dx
s[\alpha ,\beta](x)

\bigm| \bigm| \bigm| \bigm|
leafpoints(\nu)

.

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A261

Algorithm 5 [M,D] = diffmatrix(\nu)

if \nu is a leaf then
M := the Chebyshev barycentric matrix from points(\nu) to leafpoints(\nu)
Dx := Chebyshev differentiation matrix with grid points(\nu)
D := MDx

else
M,D := zeros(length(leafpoints(\nu)),length(points(\nu)))
for k = 0, 1 do
[Mk,Dk] := diffmatrix(ck(\nu))
M(leafpointindex(ck(\nu)),pointindex(ck(\nu))) =

\lhook \rightarrow diag
\Bigl(
wk| leafpoints(ck(\nu))

\Bigr)
*Mk;

D(leafpointindex(ck(\nu)),pointindex(ck(\nu))) =

\lhook \rightarrow diag
\Bigl(
wk| leafpoints(ck(\nu))

\Bigr)
*Dk+

\lhook \rightarrow diag
\Bigl(

d
dx wk| leafpoints(ck(\nu))

\Bigr)
*Mk;

end for
end if

Let Ik = interval(ck(\nu)), wk(x) = wk(\nu) for k = 0, 1. Then

(25)

s[\alpha ,\beta](x)
\bigm| \bigm|
leafpoints(\nu)

=

1\sum
k=0

wk(x)sIk(x)| leafpoints(\nu) ,

d

dx
s[\alpha ,\beta](x)

\bigm| \bigm| \bigm| \bigm|
leafpoints(\nu)

=

1\sum
k=0

\biggl(
wk(x)

d

dx
sIk(x) +

d

dx
wk(x)sIk(x)

\biggr) \bigm| \bigm| \bigm| \bigm|
leafpoints(\nu)

.

Thus we can recursively build up the differentiation matrix through the tree T . Due
to the support of the weights, for each term in (25) we only need evaluate the ap-
proximation sIk(x) (or its derivative) for leafpoints(\nu)\cap Ik, i.e., leafpoints(ck(\nu)). We
describe how to construct the differentiation recursively in Algorithm 5, using MAT-
LAB notation for matrices. At each leaf the interpolation matrix M has entries given
by the barycentric interpolation formula based on second-kind Chebyshev points, as
produced by the Chebfun command barymat [5].

For x \in [\alpha , \beta] we only need to evaluate the local approximations for the patches
x belongs to; this implies that the differentiation matrices will be inherently sparse.
For example, Figure 6 shows the sparsity of the first derivative matrix for the tree
generated in Figure 3. In this case, we have a sparsity ratio of around 76\%.

6. PUM for boundary-value problems. Our method can be applied to solve
linear and nonlinear BVPs. For instance, consider a simple Poisson problem with zero
boundary conditions:

(26)
u\prime \prime (x) = f(x) for - 1 < x < 1,

u(- 1) = 0, u(1) = 0.

Suppose that we have differentiation and interpolation matrices Dxx and M from
section 5.2, X is the set of Chebyshev points over all the leaves, and XI , XB are the
respective interior and boundary points of X. Let EI and EB be the matrices that
map a vector to its subvector for the interior and boundary indices, respectively. Let

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A262 KEVIN W. AITON AND TOBIN A. DRISCOLL

0 100 200 300 400 500

nz = 74617

0

50

100

150

200

250

300

350

400

450

500

Fig. 6. Sparsity of the first derivative matrix for the tree generated for Figure 3.

F be the vector of values used for the local interpolants (i.e., if we had only two leaves
whose interpolants used values F1, F2, we set F = [FT

1 F
T
2]T). In order to find a PUM

approximation s(x) that approximates (26) we find F by solving the following linear
system:

(27)

\Biggl[
EIDxx

EBM

\Biggr] \Biggl[
EIF

EBF

\Biggr]
=

\Biggl[
f | XI

0

\Biggr]
.

Algorithm 6 builds an adaptive solution for the BVP. We first construct a PU
approximation s(x) by solving the discretized system in (27). Sampling with s(x),
we use Algorithm 2 to determine if the solution is refined and split leaves that are
determined to be unrefined. Here we also allow merging for a node with resolved left
and right leaves (i.e., the left and right leaves can be merged back together).

Algorithm 6 T = refineBVP(nmax,t,BVP)

Define T as a tree with a single node with the domain of the BVP.
while T has unrefined leaves do
Find values for the interpolants F of the leaves of T by solving a discretized

system defined by the interpolation and differentiation matrices of T .
sample(T ,F)
s(x) = eval(root(T), x) (the PU approximation)
sample(T ,s(x))
splitleaves(root(T),nmax,t)

end while

6.1. BVP examples. We solve the stationary Burgers equation on the interval
[0, 1] with Robin boundary conditions [11]:

(28)

\nu u\prime \prime (x) - u(x)u\prime (x) = 0,

\nu u\prime (0) - \kappa (u(0) - \alpha) = 0,

\nu u\prime (1) + \kappa (u(1) + \alpha) = 0,

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A263

which has nontrivial solution

(29) u(x) = - \beta tanh
\biggl(
1

2
\beta \nu - 1

\biggl(
x - 1

2

\biggr) \biggr)
,

where \beta satisfies

(30) - 1

2
\beta 2sech2

\biggl(
1

4
\beta \nu - 1

\biggr)
+ \kappa

\biggl[
\alpha - \beta tanh

\biggl(
1

4
\beta \nu - 1

\biggr) \biggr]
= 0.

We choose \nu = 5 \times 10 - 3, \alpha = 1, and \kappa = 2. We use fsolve in MATLAB to
solve the BVP, supplying the Jacobian of the discretized nonlinear system. Starting
with a linear guess u(x) = 0, we update the solution from the latest solve (i.e., if the
solution s(x) from Algorithm 6 is determined to be unresolved, we use it as the next
initial guess). For this problem we set the Chebfun chopping tolerance to 10 - 10. Our
solution was resolved to the tolerance we set after four nonlinear solves; as seen in
Figure 7, the final approximation had 298 nodes and the absolute error was less than
10 - 4. On a machine with a 2.6 GHz Intel Core i5 processor, the solution was found
in 1.3 seconds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Solution with subintervals plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

(b) Plot of the error.

Fig. 7. Numerical solution using the PUM and residual for the BVP (28) with \nu = 5\times 10 - 3,
t = 0.1, and n\itm \ita \itx = 128.

We performed a similar experiment but instead used global Chebyshev inter-
polants. We adapt by increasing the degree of the polynomial from n to floor(1.5n),
starting with n = 128. We stop when we have a solution that is refined to the toler-
ance 10 - 10 (same as before). Both the solution and residual are shown in Figure 8;
here we have that the absolute error is higher at 1.8e-2. The solution took 3.2 minutes
on the same machine. There are two main reasons why the global solution performs
much slower. First, in order to resolve the true solution with the tolerance 10 - 10, the
global Chebyshev solution requires 766 nodes, versus 300 for the PU approximation.
Second, when adapting with the PUM, if a leaf is determined to be refined, the num-
ber of nodes is reduced as dictated in Algorithm 1 and the leaf is not split in further
iterations. This keeps the total number of nodes lower while adapting.

7. Discussion. Our method offers a simple way to adaptively construct infinitely
smooth approximations of functions that are given explicitly or that solve BVPs. By
recursively constructing the PU weights with the binary tree, we avoid the need to

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A264 KEVIN W. AITON AND TOBIN A. DRISCOLL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Solution with subintervals plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b) Plot of the error.

Fig. 8. Numerical solution using the global Chebyshev method and residual for the BVP (28)
with \nu = 5\times 10 - 3.

determine the neighbors of each patch (as would be needed with the standard Shep-
ard's PU weights). While this is not a serious issue in one dimension, the complexity
of how the patches overlap increases with higher dimension. For example, in 2D we
could build a similar method on a box where we use tensor product Chebyshev ap-
proximations. We would refine by splitting the box into two overlapping parts (either
in x or y) and recursively building a binary tree. We similarly would define PUs
for each of the splits. If we used infinitely smooth weights at the splits, the 2D PU
approximation would be infinitely smooth as well.

Our method leaves room for improvement. For instance, while merging helps
reduce the number of nodes, in cases where we have a singularity right above the
split the PU method overresolves in the overlap; this can be seen in Figure 3. The
source of the problem is that patches may be adjacent in space but not in the tree.
This could be resolved by a more robust merging algorithm. Alternatively we could
determine an optimal splitting location through a Chebyshev--Pad\'e approximation as
in [6], but the PU adds a layer of complexity since we must optimize not just for the
splitting location but for the size of the overlap.

Additionally it is possible to construct weights that are not C\infty but have smaller
norms in their derivatives. For instance,

(31)
w\ell (x) =

\left\{
1, x \leq - t,
1
4t3x

3 - 3
4tx+ 1

2 , - t \leq x \leq t,

0, x > t,

wr(x) = 1 - w\ell (x)

defines a C1[- 1, 1] piecewise cubic partition of unity, where \| w\prime
\ell (x)\| \infty = 3

4t . If a BVP
requires higher smoothness, we could similarly construct a higher degree polynomial
for the weights.

REFERENCES

[1] J. L. Aurentz and L. N. Trefethen, Chopping a Chebyshev series, ACM Trans. Math. Softw.,
43 (2017), pp. 33:1--33:21, https://doi.org/10.1145/2998442.

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1145/2998442

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE PARTITION OF UNITY A265

[2] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743--1770, https://doi.org/10.1137/
S1064827503430126.

[3] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792--797, https://doi.org/10.1137/
S106482759732678X.

[4] T. A. Driscoll, F. Bornemann, and L. N. Trefethen, The chebop system for automatic
solution of differential equations, BIT, 48 (2008), pp. 701--723.

[5] T. A. Driscoll and N. Hale, Rectangular spectral collocation, IMA J. Numer. Anal., 36
(2015), pp. 108--132.

[6] T. A. Driscoll and J. A. C. Weideman, Optimal domain splitting for interpolation by Cheby-
shev polynomials, SIAM J. Numer. Anal., 52 (2014), pp. 1913--1927, https://doi.org/10.
1137/130919428.

[7] R. Franke and G. Nielson, Smooth interpolation of large sets of scattered data, Internat. J.
Numer. Methods Engrg., 15 (1980), pp. 1691--1704.

[8] M. Griebel and M. A. Schweitzer, A particle-partition of unity method for the solution of
elliptic, parabolic, and hyperbolic PDEs, SIAM J. Sci. Comput., 22 (2000), pp. 853--890,
https://doi.org/10.1137/S1064827599355840.

[9] D. H. McLain, Two dimensional interpolation from random data, Comput. J., 19 (1976),
pp. 178--181.

[10] R. Pach\'on, R. B. Platte, and L. N. Trefethen, Piecewise-smooth chebfuns, IMA J. Numer.
Anal., 30 (2010), pp. 898--916.

[11] L. G. Reyna and M. J. Ward, On the exponentially slow motion of a viscous shock, Comm.
Pure Appl. Math., 48 (1995), pp. 79--120.

[12] A. Safdari-Vaighani, A. Heryudono, and E. Larsson, A radial basis function partition of
unity collocation method for convection--diffusion equations arising in financial applica-
tions, J. Sci. Comput., 64 (2015), pp. 341--367.

[13] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in Proceed-
ings of the 23rd ACM National Conference, ACM, 1968, pp. 517--524.

[14] I. Tobor, P. Reuter, and C. Schlick, Reconstructing multi-scale variational partition of
unity implicit surfaces with attributes, Graphical Models, 68 (2006), pp. 25--41.

[15] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadel-
phia, 2000, https://doi.org/10.1137/1.9780898719598.

[16] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[17] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2004.

D
ow

nl
oa

de
d

06
/1

0/
19

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/S1064827503430126
https://doi.org/10.1137/S1064827503430126
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/130919428
https://doi.org/10.1137/130919428
https://doi.org/10.1137/S1064827599355840
https://doi.org/10.1137/1.9780898719598

	Introduction
	Chebyshev interpolation
	Partition of unity formalism
	Convergence analysis
	Recursive algorithm
	Merging
	Differentiation matrices

	PUM for boundary-value problems
	BVP examples

	Discussion
	References

